Issue
Korean Journal of Chemical Engineering,
Vol.35, No.10, 2133-2137, 2018
Surface modified nanostructured-TiO2 thin films for removal of Congo red
We synthesized nanostructured TiO2 thin films by the modified sol-gel template method using the polyethylene glycol as filler media. The TiO2 surface modification for both the thin films, i.e., template and non-template, was done with the ascorbic acid. All the four thin film samples, S1 (TiO2 (non-template), TiO2 (template), S3 (S1 modified with ascorbic acid) and S4 (S2 modified with ascorbic acid), were characterized by various analytical methods. Phase evaluation was monitored by the X-Ray diffraction analysis. Moreover, the thin films particle sizes were obtained to be 22.32, 21.20, 14.52 and 16.77 nm, respectively for the samples S1, S2, S3 and S4. The changes in particle size and morphology due to the PEG and ascorbic acid were determined by scanning electron microscopy (SEM). Similarly, thermal gravimetric (TG) and differential scanning calorimetry (DSC) were performed to determine the decomposition behavior of organic compound present in the solid samples. The functional groups were determined by infrared (IR) analysis. The photocatalytic efficiency, as a reference of Congo red, was conducted using all the four samples of TiO2 thin films. Complete photocatalytic degradation of Congo red was achieved by these samples within 130, 80, 40 and 30 mins of UV illumination.
[References]
  1. Wintgens T, Salehi F, Hochstrat R, Melin T, Water Sci. Technol., 57, 99, 2008
  2. Suarez S, Carballa M, Omil F, Lema JM, Rev. Environ. Sci. Bio-Technol., 7, 125, 2008
  3. Babaei AA, Kakavandic B, Rafiee M, Kalantarhormizi F, Purkaram I, Ahmadi E, Esmaeili S, J. Ind. Eng. Chem., 56, 163, 2017
  4. Khan A, Prabhu SM, Park J, Lee W, Chon CM, Ahn JS, Lee G, J. Ind. Eng. Chem., 47, 86, 2017
  5. Bahnemann D, Solar Energy, 77, 445, 2004
  6. Vidal A, Chemosphere, 36, 2593, 1998
  7. Kim MK, Zoh KD, Environ. Eng. Res., 21, 319, 2016
  8. Singh J, Chang YY, Koduru JR, Yang JK, Singh DP, Environ. Eng. Res., 22, 245, 2017
  9. Vinu R, Madras G, J. Ind. Insti. Sci., 90, 189, 2010
  10. Ganoulis J, Risk Analysis of Water Pollution, 2nd Ed. WILEY-VCH, Chapt. 1, 1 (2009).
  11. Viessman JW, Hammer MJ, sixth Ed. Addison Wesley Longman Inc., California U.S.A. (1998).
  12. Garcia A, Amat AM, Arques A, Sanchis R, Gernja W, Maldonado MI, Environ. Chem. Lett., 3, 169, 2006
  13. Padmanabhan PVA, Sreekumar KP, Thiyagarajan TK, Satpute RU, Bhanumurthy K, Sengupta P, Dey GK, Warrier KGK, Vacuum, 80, 11, 2006
  14. Yang H, Cheng H, Sep. Purif. Technol., 56(3), 392, 2007
  15. Lu JF, Zhang T, Ma J, Chen ZL, J. Hazard. Mater., 162(1), 140, 2009
  16. Coleman HM, Marquis CP, Scott JA, Chin SS, Amal R, Chem. Eng. J., 113(1), 55, 2005
  17. Rodriguez SM, Galvez JB, Gasca CAE, Solar Energy, 77, 443, 2004
  18. Franch MI, Ayllon JA, Peral J, Domenech X, Appl. Catal. B: Environ., 50(2), 89, 2004
  19. Esplugas S, Gimenez J, Conteras S, Pascual E, Rodrıguez M, Water Res., 36, 1034, 2002
  20. Rather RA, Singh S, Pal B, J. Ind. Eng. Chem., 37, 288, 2016
  21. Jiang Y, Li F, Liu Y, Hong Y, Liu P, Ni L, J. Ind. Eng. Chem., 41, 130, 2016
  22. Pera-Titus M, Garcia-Molina V, Banos MA, Gimenez J, Esplugas S, Appl. Catal. B: Environ., 47(4), 219, 2004
  23. Andreozzi R, Caprio V, Insola A, Marotta R, Catal. Today, 53(1), 51, 1999
  24. Herrmann JM, Catal. Today, 53(1), 115, 1999
  25. Gaya UI, Abdullah AH, J. Photochem. Photobiol. C: Photochem. Rev., 9, 1, 2008
  26. Fujishima A, Rao TN, Tryk DA, J. Photochem. Photobiol. C: Photochem., 1, 1, 2000
  27. Sorcar S, Razzaq A, Tian H, Grimes CA, In SI, J. Ind. Eng. Chem., 46, 203, 2017
  28. Byrne JA, Eggins BR, J. Electroanal. Chem., 457(1-2), 61, 1998
  29. Serpone N, J. Photochem. Photobiol. A-Chem., 104, 1, 1997
  30. Park NG, van de Lagemaat J, Frank AJ, J. Phys. Chem. B, 104(38), 8989, 2000
  31. Yasumori A, Yamazaki K, Shibata S, Yamane M, J. Ceram. Soc. Jpn., 102, 702, 1994
  32. Sonawane RS, Hedge SG, Dongare MK, Mater. Chem. Phys., 77, 744, 2002
  33. Nam SH, Shin YJ, An YJ, Environ. Eng. Res., 22, 426, 2017
  34. Mendoza JA, Lee DH, Kang JH, Environ. Eng. Res., 21, 291, 2016
  35. Karlsson PG, Richter JH, Andersson MP, Johansson MKJ, Blomquist J, Uvdal P, Sandell A, Surf. Sci., 605, 1147, 2001
  36. Lopez A, Acosta D, Martinez AI, Santiago J, Powder Technol., 202(1-3), 111, 2010
  37. Ishikawa Y, Matsumoto Y, Electrochim. Acta, 46(18), 2819, 2001
  38. Keshmiri M, Mohseni M, Troczynski T, Appl. Catal. B: Environ., 53(4), 209, 2004
  39. Chen Y, Stathatos E, Dionysiou DD, J. Photochem. Photobiol. A-Chem., 203, 192, 2009
  40. Arconada N, Duran A, Suarez S, Portela R, Coronado JM, Sanchez B, Castro Y, Appl. Catal. B: Environ., 86(1-2), 1, 2009
  41. Xagas AP, Bernard MC, Goff AGL, Spyrellis N, Loizos Z, Falaras P, J. Photochem. Photobiol. A-Chem., 132, 115, 2000
  42. Lopez L, Daoud WA, Dutta D, Surf. Coat. Technol., 205, 251, 2010
  43. Rahim S, Ghamsari MS, Radiman S, Scientia Iranica F, 19, 948, 2012
  44. Maira AJ, Coronado JM, Augugliaro V, Yeung KL, Conesa JC, Soria J, J. Catal., 202(2), 413, 2001
  45. Devi LG, Reddy KM, Appl. Surf. Sci., 257(15), 6821, 2011
  46. Sugapriya S, Sriram R, Lakshmi S, Optik, 124, 4971, 2013
  47. Kim JW, Ki CS, Um IC, Park YH, J. Ind. Eng. Chem., 56, 335, 2017