Issue
Korean Journal of Chemical Engineering,
Vol.35, No.8, 1626-1635, 2018
Comparative kinetic study of coal gasification with steam and CO2 in molten blast furnace slags
To make a comparison between coal gasification in molten blast furnace slag (MBFS) in different ambience and choose an appropriate agent to recover BF slag’s waste heat entirely, coal gasification with steam and CO2 in molten blast furnace slags was studied by isothermal thermo-gravimetric analysis. The effects of temperature and addition of MBFS were studied. Carbon conversion and reaction rate increased with increasing temperature and MBFS. Volumetric model (VM), shrinking core model (SCM), and diffusion model (DM) were applied to describe the coal gasification behavior of FX coal. The most appropriate model describing the coal gasification was SCM in steam ambience and VM in CO2 ambience, respectively. The reaction rate constant k(T) in CO2 ambience is greater than that in steam ambience, which means the gasification reactivity of coal in CO2 ambience is better than that in steam ambience. BF slag can effectively reduce the activation energy EA of coal gasification reaction in different ambiences. But, the difference of activation energies is not large in different ambiences. Based on the results of kinetic analysis including k(T) and EA calculated by the established model, CO2 was chosen to be the most appropriate agent.
[References]
  1. Molina A, Mondragon F, Fuel, 77(15), 1831, 1998
  2. Takarada T, Tamai Y, Tomita A, Fuel, 64, 1438, 1985
  3. Maldonado-Hodar FJ, Rivera-Utrilla J, Mastral-Lamarca AM, Fuel, 74, 823, 1995
  4. Feng B, Bhatia SK, Carbon, 41, 507, 2003
  5. Niu Y, Wang S, Gong Y, Hui SE, Energy Procedia, 142, 1635, 2017
  6. Zhu S, Bai Y, Luo K, Hao C, Bao W, Li F, J. Anal. Appl. Pyrolysis, 128, 13, 2017
  7. Sekine Y, Ishikawa K, Kikuchi E, Matsukata M, Energy Fuels, 19(1), 326, 2005
  8. Sun QL, Li W, Chen HK, Li BQ, Fuel, 83(13), 1787, 2004
  9. Xi J, Liang J, Sheng X, Shi L, Li S, J. Anal. Appl. Pyrolysis, 117, 228, 2016
  10. Du RL, Wu K, Xu DA, Chao CY, Zhang L, Du XD, Fuel Process Technol., 148, 295, 2016
  11. Niksa S, Heyd L, Russel W, Saville D, Symposium (International)on Combustion, Elsevier, 1445 (1985).
  12. Duan WJ, Yu QB, Zuo ZL, Qin Q, Li P, Liu JX, Energy Conv. Manag., 87, 185, 2014
  13. Duan WJ, Yu QB, Xie HQ, Qin Q, Zuo ZL, Int. J. Hydrog. Energy, 39(22), 11611, 2014
  14. Duan WJ, Yu QB, Xie HQ, Liu JX, Wang K, Qin Q, Han ZC, Int. J. Hydrog. Energy, 41(3), 1502, 2016
  15. Duan WJ, Yu QB, Wang K, Qin Q, Hou LM, Yao X, Wu TW, Energy Conv. Manag., 100, 30, 2015
  16. Li P, Yu QB, Qin Q, Lei W, Ind. Eng. Chem. Res., 51(49), 15872, 2012
  17. Li P, Yu QB, Xie HQ, Qin Q, Wang K, Energy Fuels, 27(8), 4810, 2013
  18. Duan WJ, Yu QB, Wu TW, Yang F, Qin Q, Int. J. Hydrog. Energy, 41(42), 18995, 2016
  19. Duan WJ, Yu QB, Liu JX, Wu TW, Yang F, Qin Q, Energy, 111, 859, 2016
  20. Kasai E, Kitajima T, Akiyama T, Yagi J, Saito F, ISIJ Int., 37, 1031, 1997
  21. Qin Y, Lv X, Bai C, Qiu G, Chen P, Jom-us., 64, 997, 2012
  22. Zhang H, Wang H, Zhu X, Qiu YJ, Li K, Chen R, Liao Q, Appl. Energy, 112, 956, 2013
  23. Barati M, Esfahani S, Utigard TA, Energy, 36(9), 5440, 2011
  24. Sun Y, Zhang Z, Liu L, Wang X, Energies, 8, 1917, 2015
  25. Li P, Qin Q, Yu QB, Du WY, Advanced Materials Research, Trans Tech Publ., 2347 (2010).
  26. Tanner J, Bhattacharya S, Chem. Eng. J., 285, 331, 2016
  27. Wang Y, Bell DA, Fuel, 187, 94, 2017
  28. Gomez A, Mahinpey N, Chem. Eng. Res. Des., 95, 346, 2015
  29. Jayaraman K, Gokalp I, Jeyakumar S, Appl. Therm. Eng., 110, 991, 2017
  30. Zou JH, Zhou ZJ, Wang FC, Zhang W, Dai ZH, Liu HF, Yu ZH, Chem. Eng. Process., 46(7), 630, 2007
  31. Silbermann R, Gomez A, Gates I, Mahinpey N, Ind. Eng. Chem. Res., 52(42), 14787, 2013
  32. Bhatia SK, Perlmutter, AIChE J., 26, 379, 1980
  33. Irfan MF, Usman MR, Kusakabe K, Energy, 36(1), 12, 2011
  34. Jankovic B, Adnadevic B, Jovanovic J, Thermochim. Acta, 452(2), 106, 2007
  35. Liu H, Luo CH, Kato S, Uemiya S, Kaneko M, Kojima T, Fuel Process. Technol., 87(9), 775, 2006
  36. Liu H, Luo CH, Toyota M, Uemiya S, Kojima T, Fuel Process. Technol., 87(9), 769, 2006
  37. Gao MQ, Yang ZR, Wang YL, Bai YH, Li F, Xie KC, Fuel, 189, 312, 2017
  38. Sun Y, Nakano J, Liu L, Wang X, Zhang Z, Sci. Rep-uk., 5, 11436, 2015
  39. Sun YQ, Zhang ZT, Liu LL, Wang XD, Bioresour. Technol., 181, 174, 2015
  40. Kannan M, Richards G, Fuel, 69, 747, 1990
  41. McKee DW, Carbon, 12, 453, 1974
  42. Ren L, Yang J, Gao F, Yan J, Energy Fuels, 27, 5054, 2013
  43. Liu H, Zhu H, Kaneko M, Kato S, Kojima T, Energy Fuels, 24, 68, 2010
  44. Ye DP, Agnew JB, Zhang DK, Fuel, 77(11), 1209, 1998
  45. Pande AR, Fuel, 71, 1299, 1992