Issue
Korean Journal of Chemical Engineering,
Vol.27, No.6, 1725-1729, 2010
Optimization of medium components for D-ribose production by transketolase-deficient Bacillus subtilis NJT-1507
Statistical experimental designs were used to optimize the composition of culture media for the production of D-ribose by Bacillus subtilis. A fractional factorial design 2(5-2) was used to determine medium components that significantly affected D-ribose production. The concentrations of glucose and (NH4)2SO4 were the significant factors. Central composite design and response surface methodology were then used to estimate the quadratic response surface and determine the factor levels for maximum production of D-ribose. Finally, the optimal medium composition was obtained (g/L): glucose, 172.75; (NH4) 2SO4, 13.2; yeast powder, 4; corn steep liquor, 8 and MnSO4, 0.5. This optimization strategy increased D-ribose production from 73.21 g/L to 88.57 g/L, an increase of 22% compared with the original conditions. The D-ribose production yield to glucose concentration was also enhanced from 0.37 g/g to 0.52 g/g. Confirmatory experiments were also performed to demonstrate the accuracy of the model. Under the optimal medium using ammonia to control pH in a 5 L fermenter, the D-ribose yield was increased to 95.28 g/L after 3 days of cultivation at 37 ℃.
[References]
  1. Park YC, Choi JH, Bennett GN, Seo JH, J. Biotechnol., 121, 508, 2006
  2. Sasajima KI, Yoneda M, Vandamme EJ, Elsevier Science Publishers, New York, 167, 1989
  3. Salerno C, Eufemia PD, Finocchiaro R, Celli M, Spalice A, Iannetti P, Crifoo C, Giardini O, BBA-Mol. Basis. Dis., 1453, 135, 1999
  4. Dewulf P, Vandamme EJ, Appl. Microbiol. Biotechnol., 48(2), 141, 1997
  5. Cooper J, Salomon RG, Tetrahedron. Lett., 31, 3813, 1990
  6. John WH, Joseph O, Steven S, Robert N, Marina S, Craig M, Mette S, Alfredo GS, Elba MH, Int. Immunopharmacol., 14, 555, 1992
  7. Schneider HJ, Steffen R, Dietrich P, Andreas H, Int. J. Cardiol., 125, 49, 2008
  8. Zimmer HG, Basic. Res. Cardiol., 87, 303, 1992
  9. Teitelbaum JC, Johnson C, StCyr JA, J. Alt. Comp. Med., 12, 857, 2006
  10. Herrick J, Shecterle LM, StCyr JA, Med. Hypoth., 72, 499, 2009
  11. Wulf P, Vandamme EJ, Adv. Appl. Microbiol., 44, 167, 1997
  12. Park YC, Kim SG, Kyungmoon P, Kelvin HL,Seo JH, Appl. Microbiol. Biotechnol., 66, 397, 2004
  13. Cui JD, Korean J. Chem. Eng., 27, 171, 2010
  14. Zhuang YP, Chen B, Chu J, Zhang SL, Process Biochem., 41, 405, 2006
  15. Nguyen HH, Jang NJ, Choi SH, Korean J. Chem. Eng., 26(1), 1, 2009
  16. Xiao ZJ, Liu PH, Qin JY, Xu P, Appl. Microbiol. Biotechnol., 74(1), 61, 2007
  17. Shih IL, Lin CY, Wu JY, Hsieh C, Korean J. Chem. Eng., 26(6), 1652, 2009
  18. Tang XJ, He GQ, Chen QH, Zhang XY, Ali MAM, Bioresour. Technol., 93(2), 175, 2004
  19. Virginia LP, Jonathan AG, Eur. J. Biochem., 134, 105, 1983
  20. Wulf P, PhD thesis, University of Gent, Belgium, 1995
  21. Wulf P, Soetaert W, Schwengers D, Vandamme EJ, J. Appl. Microbiol., 83, 25, 1997
  22. Haaland PD, New York, Marcel Dekker Incorporation, 1989
  23. Chen XC, Bai JX, Bioresource. Technol., 100, 919, 2009
  24. Li Y, Liu Z, Zhao H, Biochem. Eng. J., 34, 82, 2007