Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.50, No.4, 738-742, 2012
고효율 바이오물질 분리 및 농축을 위한 나노필터소자제작
Fabrication of Nano-filter Device for High Efficient Separation and Concentration of Biomolecules
본 연구에서는 알루미나 나노 템플레이트(anodic alumina oxide; AAO)를 이용하여 신속하면서도 효과적으로 나노입자 및 바이오물질을 분리, 농축할 수 있는 나노필터 소자를 개발하였다. 본 연구에서 사용한 나노필터 소자는 유체의 주입 및 흐름이 가능한 미세유체채널(microfluidic channel)을 PDMS에 패터닝하였다. 위아래로 형성된 PDMS 미세유체채널 사이로, 다양한 크기의 나노 다공을 형성하고 있는 AAO 막을 삽입하여 크기에 따른 나노입자 및 바이오물질을 분리할 수 있었다. 위아래로 PDMS 유체채널과 AAO 분리막을 집적하고, 최종적으로 아크릴레이트 플락스틱(acrylic plastic)으로 전체 소자를 고정하여 나노필터유체소자를 제작하였다. 완성된 나노필터소자를 이용하여 나노입자의 농축효율 및 은나노입자가 뭉쳐져있는 필터존(filtration zone)으로부터 뎅기 바이러스(dengue virus)를 표면증강라 만(surface enhanced Raman scattering)분석법에 의해 검출할 수 있었다.
Here, we develop a new nanofilter device for the rapid and efficient separation of nanoparticles and biomolecules, exploiting the use of AAO mebrane with ordered nanopores in the range from 20 nm to 200 nm. Briefly, the chip comprises of a series of the upper and lower PDMS channels containing embedded inlet and outlet ports, and 50 μm width microfluidic channel, and AAO membrane to be made the filtering zone. After assembling these components, the acrylate plastic plates were used to fix the device on the top and bottom side. When introducing the samples into the inlet ports of the upper PDMS channel, we were able to separate and concentrate the nanoparticles and target molecules at the filtering zone, and to elute the solutions containing the unwanted materials toward the lower PDMS channels normal to the direction of AAO membrane. To demonstrate the usefulness of the device we apply it to the SERS detection of nucleic acid sequences associated with Dengue virus serotype 2. We report a limit of detection for Dengue sequences of 300 nM and show excellent enhancement of Raman signals from the filter zone of the nanofilter device.
[References]
  1. Deen WM, AIChE J., 33, 1409, 1987
  2. Nishizawa M, Menon VP, Martin CR, Science, 268(5211), 700, 1995
  3. Jirage KB, Hulteen JC, Martin CR, Science, 278(5338), 655, 1997
  4. Che GL, Lakshmi BB, Fisher ER, Martin CR, Nature, 393(6683), 346, 1998
  5. Lee SB, Mitchell DT, Trofin L, Nevanen TK, Soderlund H, Martin CR, Science., 296, 2198, 2002
  6. Fu J, Mao P, Han J, Appl. Phys. Lett., 87, 263902, 2005
  7. Fu J, Yoo J, Han J, Phys.Rev. Lett., 97, 018103, 2006
  8. Park S, Huh YS, Craighead HG, Erickson D, Proc. Natl. Acad. Sci. USA., 106, 15549, 2009
  9. Huh YS, Choi JH, Park TJ, Hong YK, Hong WH, Lee SY, Electrophoresis, 28(24), 4748, 2007
  10. Lee EZ, Huh YS, Jun YS, Won HJ, Hong YK, Park TJ, Lee SY, Hong WH, J. Chromato. A., 1187, 11, 2008
  11. Zaytseva NV, Montagna RA, Lee EM, Baeumner AJ, Anal. Bioanal. Chem., 380, 46, 2004
  12. Franz AWE, Sanchez-Vargas I, Adelman ZN, Blair CD, Beaty BJ, James AA, Olson KE, Proc. Natl. Acad. Sci.USA., 103, 4198, 2006
  13. Lowe AJ, Huh YS, Strickland AD, Erickson D, Batt CA, Anal. Chem., 82, 5810, 2010
  14. Brown R, Smith WE, Graham D, Terahedron Lett., 42, 2197, 2001
  15. Cao YC, Jin R, Mirkin CA, Science., 297, 1536, 2002
  16. Huh YS, Chung AJ, Cordovez B, Erickson D, Lab Chip., 9, 433, 2009
  17. Abu-Hatab NA, John JF, Oran JM, Sepaniak MJ, Appl. Spectrosc., 61, 1116, 2007