Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.50, No.4, 696-701, 2012
전해환원 공정에서의 사용후핵연료 분배 특성 분석
Analysis on Distribution Characteristics of Spent Fuel in Electrolytic Reduction Process
사용후핵연료의 안정적 관리와 재활용을 위해 건식 처리공정이 관심을 끌고 있으며 현재 국내에서도 이를 중심으로 사용후핵연료 관리를 위한 방안이 모색되고 있다. 파이로 공정으로 불리는 사용후핵연료 고온 용융염 공정 중 전해환원 공정은 후속 공정인 전해정련 공정에 금속 물질을 공급하는 역할을 한다. 이를 위해 전해환원 공정은 고온 LiCl을 매질로 사용하여 전기화학적으로 생성된 Li과의 반응으로 산화물을 금속으로 전환시킨다. 사용후핵연료에 존재하는 다양한 핵종들은 전해환원 공정의 매질인 LiCl과 반응 매질인 Li에 대한 반응성에 차이에 의해 시스템 내에 분배하게 된다. 본 연구에서는 이와 같은 시스템에서 사용후핵연료 구성 성분들의 거동을 해석하기 위해 열역학적 계산을 통해 각원소들의 반응성을 확인하였다. 공정온도에서 우라늄 및 초우란 원소들은 금속으로 환원되는 반면 Eu를 제외한 희토류 산화물들은 안정적인 산화물로 존재하게 된다. 또한, 본 연구에서는 공정온도에 대한 반응의 경향을 판단하였으며 공정 온도에서 기준 사용후핵연료를 대상으로 전해환원 반응에 따라 분배되는 상들의 방사능 및 열부하를 계산하여 공정 자료를 제시하였다.
Non-aqueous processes have been developed for stable management and reuse of spent fuels. Nowadays, a plan for the management of spent fuel is being sought focusing on a non-aqueous process in Korea. Named as pyroprocessing, it includes an electrolytic reduction process using molten salt at high temperature for the spent fuels, which provides metallic product for a following electro-refining process. The electrolytic reduction process utilizes electrochemical reaction producing Li to convert oxides into metals in high temperature LiCl medium. Various kinds of elements in the spent fuels would be distributed in the system according to their respective reactivity with the reductant, Li, and the medium, LiCl. This study elucidates the reactions of the elements to understand the behavior of composite elements on the spent fuels by thermodynamic calculations. Uranium and transuranic are reduced into their metallic forms while rare-earth oxides, except for Eu, are stable against the reaction at a process temperature. This study also covers the tendency of reactions with respect to the temperature and, finally, estimates radioactivity and heat load on the distributed phases based on the reference spent fuel characteristics.
[References]
  1. Lee H, Hur JM, Kim JG, Ahn DH, Cho YZ, Paek SW, Energy Procedia., 7, 391, 2011
  2. Hur JM, Jeong SM, Lee H, Electrochem. Commun., 12, 706, 2010
  3. Lee JH, Kang YH, Hwang SC, Kim EH, Yoo JH,,Park HS, J. Mater. Process.Technol., 189, 268, 2007
  4. Jeong SM, Shin HS, Hong SS, Hur JM, Do JB, Lee HS, Electrochim. Acta, 55(5), 1749, 2010
  5. Paek S, Kim SH, Yoon DS, Lee H, Ahn DH, Radiochim. Acta., 98, 779, 2010
  6. Usami T, Kurata M, Inoue T, Sims HE, Beetham SA, Jenkins JA, J. Nucl. Mater., 300, 15, 2002
  7. Usami T, Kato T, Kurata M, Inoue T, Sims HE, Beetham SA, Jenkins JA, J. Nucl. Mater., 304, 50, 2002
  8. Barin I, Thermochemical Data of Pure Substances, VCH, Weinheim, Germany, 1989
  9. Cordfunke EHP, Konings RJM, Thermochemical Data for Reactor Materials and Fission Products, Elsevier Science Publishing Company INC., NY, 1990