Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.50, No.4, 621-626, 2012
마이크로 중공구를 이용한 자외선 경화 코팅 박막의 단열 특성
Thermal Insulation Property of UV Cure Coatings Using Hollow Micro-Spheres
본 연구에서는 마이크로 기공의 중공구를 유기 고분자 수지와 복합화한 유/무기 하이브리드 물질을 제조하여 우수한 단열 성능을 갖는 코팅유리를 개발하고자 하였다. 유기 고분자 물질로는 투명성과 접착성이 우수한 6관능기의 우레탄 아크릴레이트(UP118), 3관능기의 trimethylolpropane triacrylate (TMPTA), 2관능기의 1,6-hexanediol diacrylate(HDDA), 광 개시제(Irgacure184) 등으로 구성된 자외선 경화형 수지를 사용하였다. 유리 및 실리카 중공구를 고분자수지에 각각 10~40 vol%까지 첨가하여 얻어진 코팅 졸을 투명유리에 바(bar)코팅 방식으로 박막을 형성시킨 후 자외선 경화를 통해 최종 코팅유리를 제조하였다. 마이크로 중공구의 종류 및 함량이 제조된 코팅유리의 광 투과율, 열전도도, 접착성 및 표면 경도에 미치는 영향을 조사하였다. 복합물 코팅유리는 중공구가 과량 첨가되어도 우수한 접착성(5B)을 유지하였으며, 단열 성능은 각 중공구가 20 vol%만 함유되어도 뚜렷하게 향상된 결과를 나타냈다. 또한 실리카 중공구(SP)를 단열 재료로 사용하였을 경우 광 투과율 80 %의 투명 코팅유리를 얻을 수 있었다.
In this study, the composite coating materials with improved thermal insulation property were prepared by incorporating the hollow micro-spheres with high heat transfer resistance. The UV curable resin system consisting of hexa aliphatic urethane acrylate (UP118), trimethylolpropane triacrylate (TMPTA), 1,6-hexanediol diacrylate (HDDA), and photoinitiator (Irgacure184) was employed as an organic binder. The glass substrates were coated by the prepared composites via bar coating method and cured under UV radiation. The optical transparency, thermal insulation property, adhesion, and surface hardness of the glass coated with composites containing different type of micro-spheres were investigated. The incorporation of micro-spheres with only 20 vol% of content resulted in remarkable improvement in the thermal insulation property of the coated glass. In addition, the transparent coated glass with light transmittance of about 80% could be obtained when silica micro-sphere (SP) was used as a thermal barrier.
[References]
  1. Lee SS, J. AIK., 26(5), 67, 2010
  2. Jang CY, Ahn BL, Kim CH, Kim JS, Lee SJ, J. KSES., 3(1), 133, 2011
  3. Park SH, Lee KS, Reddy AS, Solid state Sci., 13, 1984, 2011
  4. Kim GS,Hyun SH, J. Non-Cryst. Solids., 320, 125, 2003
  5. Jensen KI, Schultz JM, Kristiansen FH, J. Non-Cryst. Solids., 350, 351, 2004
  6. Kim HS, Jeong SK, Jeong SH, Supercond. Uctivity and Cryogenics., 12(3), 49, 2010
  7. Fesmire JE, Augustynowicz SD, Adv. Cryog. Eng., 49, 612, 2004
  8. Allen MS, Baumgartner RG, Fesmire JE, Augustynowicz SD, Adv.Cryog. Eng., 49, 619, 2004
  9. Baumgartner RG, Myers EA, Fesmire JE, Morris DL, Sokalski ER, Adv. Cryog. Eng., 51, 1351, 2006
  10. Han L, Gao C, Wu X, Chen Q, Shu P, Ding Z, Che S, Solid State Sci., 13, 721, 2011
  11. Tagliavia G, Porfiri M, Gupta N, Compos. Pt.B., 41(1), 86, 2010
  12. Xu N, Dai J, Tian J, Ao X, Shi L, Huang X, Zhu Z, Mater. Res. Bull., 46(1), 92, 2011
  13. Xu N, Dai J, Zhu Z, Huang X, Wu P, Ceram.Int., 37(7), 2663, 2011
  14. Marcadon V, Comput. Mater. Sci., 50, 3005, 2011
  15. Kim SW, Korean J. Chem. Eng., 28(1), 298, 2011
  16. Hwang JH, Song KC, Korean Chem. Eng. Res., 49(3), 277, 2011