Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.50, No.2, 379-384, 2012
금 표면 위에 형성된 글루타싸이온 층의 표면 물성
Surface Properties of Glutathione Layer Formed on Gold Surfaces
이산화티탄 표면에 흡착되는 금 입자의 분포 또는 그 반대 경우의 분포에 영향을 끼칠 수도 있는 정전기적 상호작용과 금 입자를 코팅한 Glutathione 층의 표면물성을 규명하였다. 이를 위하여, 원자힘현미경(AFM)으로 Glutathione 층표면과 이산화티탄표면 사이의 표면힘을 염 농도와 pH 값에 따라 측정하였다. 측정된 힘은 Derjaguin-Landau-Verwey-Overbeek(DLVO) 이론으로 해석되어 표면의 정전기적인 특성들이 정량적으로 산출되었다. 이 특성들이 염 농도와 pH에 대하여 나타내는 의존성을 질량보존의 법칙으로 기술하였다. pH 8과 11에서 실험으로 산출된 표면 특성의 염 농도 의존성은 이론적으로 예측했던 결과와 일치하는 것으로 관찰되었다. pH 8과 11에서 Glutathione 층의 표면이 이산화 티탄 표면보다 높은 정전기적 특성을 갖는 것이 발견되었는데, 이는 Glutathione 층의 이온화-기능-그룹에 기인한 것으로 생각된다.
It is investigated that that the physical properties of Glutathione layer formed on gold surfaces may make an effect on the distribution of either gold particle adsorbed to the TiO2 surface or vice versa with the adjustment of the electrostatic interactions. For the investigation, the atomic force microscope (AFM) was used to measure the surface forces between the surfaces as a function of the salt concentration and pH value. With the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, the forces were quantitatively analyzed to acquire the surface potential and charge density of the surfaces for each salt concentration and each pH value. The surface potential and charge density dependence on the salt concentration was described with the law of mass action, and the pH dependence was explained with the ionizable groups on the surface. The salt concentration dependence of the surface properties, found from the measurement at pH 8 and 11, was consistent with the prediction from the law. It was found that the Glutathione layer had higher values for the surface charge densities and potentials than the titanium dioxide surfaces at pH 8 and 11, which may be attributed to the ionized-functional-groups of the Glutathione layer.
[References]
  1. Sun SQ, Mendes P, Critchley K, Diegoli S, Hanwell M, Evans SD, Leggett GJ, Preece JA, Richardson TH, Nano Lett., 6(3), 345, 2006
  2. Peter A, Baia M, Toderas F, Lazar M, Tudoran LB, Danciu V, Studia Universitatis Babes-bolyai Chemia., 54(3), 161, 2009
  3. Kowalska E, Mahaney OOP, Abe R, Ohtani B, Phys. Chem. Chem. Phys., 12(10), 2344, 2010
  4. Perlich J, Memesa M, Diethert A, Metwalli E, Wang W, Roth SV, Timmann A, Gutmann JS, Mller-Buschbauma P, Chem. Phys., 10(5), 799, 2009
  5. Li J, Zeng HC, Chem. Mater., 18, 4270, 2006
  6. Tian Y, Tatsuma T, J. Am. Chem. Soc., 127(20), 7632, 2005
  7. Kafizas A, Kellici S, Darr JA, Parkin IP, J.Photochem. Photobiol. A-Chem., 204(2-3), 183, 2009
  8. Valden M, Lai X, Goodman DW, Science, 281(5383), 1647, 1998
  9. Sakurai H, Tsubota S, Haruta M, Appl. Catal. A-Gen., 102(2), 125, 1993
  10. Li X, Fu J, Steinhart M, Kim DH, Knoll W, Bull. Korean Chem. Soc., 28(6), 1015, 2007
  11. Schmid G, Chem. Rev., 92(8), 1709, 1992
  12. Jo K, Kang HJ, Yang H, Bull.Korean Chem. Soc., 32(2), 728, 2011
  13. Cheow WS, Li S, Hadinoto K, Chem. Eng. Res. Des., 88(5-6A), 673, 2010
  14. Chou J, McFarland EW, Chem. Commun., 5(14), 1648, 2004
  15. Dasog M, Scott RWJ, Langmuir, 23(6), 3381, 2007
  16. Sandhyarani N, Pradeep T, Chem. Phys. Lett., 338(1), 33, 2001
  17. Brewer NJ, Rawsterne RE, Kothari S, Leggett GJ, J. Am. Chem. Soc., 123(17), 4089, 2001
  18. Ducker WA, Senden TJ, Langmuir., 8(7), 1831, 1992
  19. Binnig G, Quate CF, Gerber C, Phys. Rev. Lett., 56(9), 930, 1986
  20. Derjaguin BV, Landau L, Acta Physiochem. URSS., 14(11), 633, 1941
  21. Cleveland JP, Manne S, Bocek D, Hansma PK, Rev. Sci. Instrum., 64(2), 403, 1993
  22. Derjaguin B, Trans. Faraday Soc., 35(3), 203, 1940
  23. Israelachvili JN, Adams GE, J. Chem. Soc. Faraday Trans., 74, 975, 1978
  24. Shubin VE, Kekicheff P, J. Colloid Interface Sci., 155(1), 108, 1993
  25. Parker JL, Christenson HK, J. Chem.Phys., 88(12), 8013, 1988
  26. O’Shea SJ, Welland ME, Pethica JB, Chem. Phys. Lett., 223(4), 336, 1994
  27. Derjaguin BV, Kolloid Z., 69(2), 155, 1934
  28. Hartmann U, Phys. Rev. B., 43(3), 2404, 1991
  29. Israelachivili JN, Intermolecular & Surface Forces, Academic Press, New York, 183, 1991
  30. Feiler A, Jenkins P, Ralston J, Phys. Chem. Chem. Phys., 2(24), 5678, 2000
  31. Verwey EJW, Overbeek JTG, Theory of the Stability of Lyophobic Colloids, Elsevier, New York, 51, 1948
  32. Hogg R, Healy TW, Fuersten DW, Trans. Faraday Soc., (522P), 62, 1638, 1966
  33. Hunter RJ, Foundations of Colloid Science, Oxford University Press, Oxford, U.K., 396, 1987
  34. Chan DYC, Pashley RM, White LR, J. Colloid Interface Sci., 77(1), 283, 1980
  35. Parker JL, Prog. Surf. Sci., 47(3), 205, 1994
  36. Park JW, Ahn DJ, Colloids. Surf. B: Biointerfaces., 62(1), 157, 2008
  37. Ducker WA, Senden TJ, Pashley RM, Nature., 353(6341), 239, 1991
  38. Horn RG, Smith DT, Haller W, Chem. Phys. Lett., 162(4-5), 404, 1989
  39. Pashley RM, J. Colloid Interface Sci., 83(2), 531, 1981