Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.50, No.2, 292-299, 2012
UV 경화형 단량체계 실리카 분산체의 점도 특성 및 유변학적 거동
The Viscosity and Rheology of the Silica Dispersion System with UV Curable Monomers
Beads mill 분산 공정을 통하여 8 wt%의 나노 사이즈 흄드 실리카(일차 입자크기 12 nm)를 광경화형 아크릴 시스템용 단량체에 분산하여 실리카 분산체를 제조하였다. 이러한 분산체는 유/무기 하이브리드 코팅 재료에 응용이 가능하다고 알려져 있다. 하이드록시기 유무, 용해도 상수(solubility parameter, Sp, 극성도 δp의 범위; 5.204~6.286(cal/cm3)1/2), 분자 크기가 다른 4 종의 단량체를 사용하였다. 극성 용매인 이소프로필알코올(IPA)을 혼합하여 용매가 실리카 분산체의 안정성에 미치는 영향도 관찰하였다. 제조된 실리카 분산체는 레오미터를 이용하여 전단속도에 따른 전단 점도 거동과 주기적 진동흐름 하에서 동적 거동을 측정하여 분산체의 안정성을 유변학적 관점에서 관찰하였다. 단일 단량체계 및 혼합 단량체계 실리카 분산체에서 하이드록시기를 가진 단량체의 함량이 증가될수록 실리카 분산체는 손실탄성률(G")이 저장탄성률(G')보다 큰 입자가 응집되지 않는 안정한 졸의 거동을 나타내었다. 하이드록시기를 갖지 않은 단량체계 실리카 분산체는 분자 크기와 상관없이 입자가 응집되는 겔의 거동을 나타내었다. 단량체에 IPA를 혼합한 실리카 분산체는 IPA의 함량이 증가할수록 안정한 졸의 거동을 보였다.
We made 8 wt% silica dispersion system with fumed silica and photo curable acrylic monomer by beads mill process. These dispersions could be applied in organic/inorganic hybrid coating systems. These dispersions could be applied in organic/inorganic hybrid coating systems. The 4 species of photo curable acrylic monomer which was presence of hydroxyl group, different solubility parameter, and different molecular size were used in the silica dispersions. Stability of polar solvent, isopropyl alcohol, in silica dispersions was investigated. We investigated the stability of silica dispersions by using steady-state and dynamic rheology. As the monomer has hydroxyl group increased in mono and binary monomer silica dispersions, they showed non flocculated stable sol (loss modulus (G'')> storage modulus (G')). When polar solvent IPA was added into slightly flocculated silica dispersions, they changed to non flocculated stable sol.
[References]
  1. Degussa Technical Bulletins: Basic Characteristics of Aerosil (No. 11), Degussa Corp, Akron, OH, 1993
  2. Greenberg SA, Jarnutowski R, Chang TN, J. Colloid Sci., 20(1), 20, 1965
  3. Allen LH, Matjevic E, J. Colloid Interface Sci., 31(3), 287, 1969
  4. Harding RD, J. Colloid Interface Sci., 35(1), 172, 1971
  5. Benitez R, Contreras S, Goldfarb J, J. Colloid Interface Sci., 36(1), 146, 1971
  6. Vincent B, Kiraly Z, Emmett S, Beaver A, Colloids Surf., 49, 121, 1990
  7. Kiraly Z, Turi L, Dekany I, Bean K, Vicent B, Colloid Polym Sci., 274(8), 779, 1996
  8. Bauer F, Ernst H, Decker U, Findeisen M, Glasel HJ, Hartman E, Langguth H, Mehnert R, Penker C, Macromol. Chem. Phys., 201(18), 2654, 2000
  9. Schwalm R, UV Coatings: Basics, Recent Developments and New Applications, Elsevier, 2007
  10. Gigant K, Posset U, Schottner G, Baia L, Kiefer W, Popp J, J. Sol-Gel Sci. Technol., 26, 369, 2003
  11. Im JK, “Preparation and Properties of Photocurable Aliphatic Epoxy Modified Acrylates and Hyperbranched Acrylates,” Ph. D. Dissertation, Hanyang University, Seoul, Korea, 2005
  12. Peschel G, Belouschek P, Muller M, Konig R, Colloid Polym. Sci., 260(4), 444, 1982
  13. Sawitowski T, “The Use of Nanoadditives to Improve Scratch Resistance of Radiation Curable Coatings,” Proc. RadTech 2006, Conference, Chicago, IL, 2006
  14. Ahn JB, Noh ST, Appl. Chem. Eng., 20(6), 685, 2009
  15. Raghavan SR, Khan SA, J. Rheol., 39(6), 1311, 1995
  16. Lujean B, Josh O, Paint and Coating Industry., March, 2003
  17. Russel WB, Saville DA, Schowalter WR, Colloidal dispersion, Cambridge Univ. Press, New York, 1989
  18. Raghavan SR, Hou J, Baker GL, Khan SA, Langmuir, 16(3), 1066, 2000
  19. Raghavan SR, Walls HJ, Khan SA, Langmuir, 16(21), 7920, 2000