Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.50, No.2, 257-263, 2012
초임계와 Lipase 고정화에 의한 바이오디젤 생산 공정의 에너지소비량
Energy Consumption of Biodiesel Production Process by Supercritical and Immobilized Lipase Method
바이오디젤은 화석연료인 경유의 대체에너지로써 비독성이고 재생 가능한 에너지이다. 바이오디젤생산방법은 크게 산·염기·초임계·효소방법으로 분류되는데 본 연구에서 친환경적으로 바이오디젤을 생산할 수 있는 초임계공정과 효소고정화공정에 대해 연구하였다. 연간 10,000톤의 바이오디젤을 생산하는 공정을 대상으로 PRO II 공정모사기를 통해 전환률과 에너지소비량을 알아보기 위한 공정모사를 실시하였다. 그 결과 초임계공정에서의 전환률은 91.17%(0.9% 글리세롤 포함), 효소고정화공정에서는 93.58%(1.0% 글리세롤 포함)로 나타났다. 이 결과는 효소고정화공정이 높은 전환률을 보였지만 바이오디젤의 순도는 초임계공정에서 높게 나타났음을 보여준다. 한편, 에너지소비량 측면에서 초임계공정과 효소고정화공정이 각각 8.9, 3.9MW를 나타났다. 즉, 초임계 공정이 효소고정화공정에 비하여 2.3배 많은 에너지를 소모한다는 것을 확인할 수 있었다.
Biodiesel is a renewable energy which is nontoxic and acting as a replacement for conventional diesel which derived from fossil fuel. Classified biodiesel producing way such as acid, base, supercritical and enzyme methods, this study focused on eco-friendly production of biodiesel using supercritical and immobilized enzyme process. Assuming a plant with a production rate of 10,000 tons a year, a PRO II simulator program was used to simulate the product conversion rate and total energy consumption. The product conversion in supercritical process and immobilized enzyme was found to be 91.17% (including 0.9% glycerol) and 93.18% (including 1.0% glycerol) respectively. The result shows that the efficiency of immobilized enzyme process is higher compared to supercritical process but having lower end product purity. From the energy consumption point of view, supercritical process consume about 8.9 MW while immobilized enzyme process consume much lower energy which is 3.9 MW. Consequently, this study certifies that energy consumption of supercritical process is 2.3 times higher than immobilized enzyme process.
[References]
  1. Ma FR, Hanna MA, Bioresour. Technol., 70(1), 1, 1999
  2. Ruan CJ, Li H, Guo YQ, Qin P, Gallagher JL, Seliskar DM, Lutts S, Mahy G, Ecol. Eng., 32, 320, 2008
  3. Kulkarni MG, Dalai AK, Bakhshi NN, Bioresour. Technol., 98(10), 2027, 2007
  4. Knothe G, Fuel Process. Technol., 86(10), 1059, 2005
  5. Gryglewicz S, Bioresour. Technol., 70(3), 249, 1999
  6. Furuta S, Matsuhashi H, Arata K, Catal. Commun., 5, 721, 2004
  7. Ma F, Clements LD, Hanna MA, Trans. ASAE., 41, 1261, 1998
  8. Kusdiana D, Saka S, Bioresour. Technol., 91(3), 289, 2004
  9. Alex HW, Posarac D, Ellis N, Bioresour. Technol., 99, 6587, 2008
  10. Minami E, Saka S, Fuel., 85, 2479, 2006
  11. Zhang Y, Dube MA, McLean DD, Kates M, Bioresour. Technol., 89(1), 1, 2003
  12. Zhang Y, Dube MA, McLean DD, Kates M, Bioresour. Technol., 90(3), 229, 2003
  13. Fu B, Vasudevan PT, Energy Fuels., 24, 4646, 2010
  14. Bajaj A, Lohan P, Prabhat NJ, Mehrotra R, Enzymatic., 62, 9, 2010
  15. James MD, Conceptual Design of Chemical Processes, International ed., McGraw-Hill, New York, NY, 1988
  16. Barniki SD, Fair JR, Ind. Eng. Chem. Res., 29(31), 1679, 1992
  17. Kuramochi H, Maeda K, Kato S, Osako M, Nakamura K, Sakai SI, Fuel., 88, 1472, 2009
  18. Shieh CJ, Liao HF, Lee CC, Bioresour. Technol., 88(2), 103, 2003