Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.50, No.2, 204-210, 2012
양극산화를 이용한 산화니켈 박막 제조
Preparation of Nickel Oxide Films by Anodizing
니켈에 양극산화법을 적용하여 기존의 선행연구에서 보고되었던 nm 단위의 두께를 극복하고 최대 2.3 μm 두께의 산화니켈 박막을 제조하였다. 전해질은 에틸렌글리콜을 용매로 사용하였으며 F- 이온을 공급하기 위해 NH4F를 첨가하였다. 전압을 40, 60, 80 V로 변화시키며 최대 12시간까지 양극산화반응을 진행하였으며 시간과 전압을 증가시킴에 따라 산화니켈 박막의 두께도 증가하였다. 그러나 80 V 전압에서는 급격한 산화 작용에 따른 니켈의 파괴가 나타났다. XRD 분석 결과 양극산화에 의해 NiO가 생성되었음을 확인하였다.
Nickel oxide thin films with 2.3 μm thickness were prepared in order to overcome limitations of thickness with nm dimension by anodizing. For the electrolyte, ethylene glycol was used as solvent, and NH4F was added for source of F- ions. The anodizing experiments were carried out on various voltages such as 40, 60 V and 80 V for 12 hours. The thickness of NiO was changed according to the anodizing time and the voltage. However, destruction of Ni caused by rapid oxidation reaction occurred at 80 V. XRD results show that NiO was successfully created by anodizing.
[References]
  1. Abdel-Aal EA, Rashad MM, Hydrometallurgy., 74, 189, 2004
  2. Fish RH, Michaels JN, Moore RS, Heinemann H, J. Catal., 123(1), 4, 1990
  3. Park SH, Yoo SJ, Lim JW, Yun SU, Cha IY, Sung YE, J. Korean Electrochem. Soc., 12(3), 251, 2009
  4. Kim DC, Seo S, Ahn SE, Suh DS, Lee MJ, Park BH, Yoo IK, Baek IG, Kim HJ, Yim EK, Lee JE, Park SO, Kim HS, Chung U-In, Moon JT, Ryu BI, Appl. Phys. Lett., 88(20), 202102, 2009
  5. Brenscheidt T, Nitschke F, Sollner O, Wendt H, Electrochim. Acta, 46(6), 783, 2001
  6. Lee JB, Lee SC, Lee SM, Lee SY, Kim HJ, Trans. of the Korean Hydrogen and New Energy Society., 17(1), 39, 2006
  7. Yuan YF, Xia XH, Wu JB, Chen YB, Yang JL, Guo SY, Electrochim. Acta, 56(3), 1208, 2011
  8. Dalavi DS, Suryavanshi MJ, Patil DS, Mali SS, Moholkar AV, Kalagi SS, Vanalkar SA, Kang SR, Kim JH, Patil PS, Appl. Surf. Sci., 257(7), 2647, 2011
  9. Seo S, Lee MJ, Seo DH, Jeoung EJ, Yoo IK, Hwang IR, Kim SH, Byun IS, Kim JS, Choi JS, Park HB, Appl. Phys. Lett., 85, 5655, 2004
  10. Irwin MD, Buchholz DB, Hains AW, Chang RPH, Marks TJ, PNAS., 105(8), 2783, 2008
  11. Tsu R, Esaki L, Ludeke R, Phys. Rev. Lett., 23, 977, 1969
  12. Seikea T, Nagaia J, Sol. Energy Mater., 22(2-3), 107, 1991
  13. Sato H, Minami T, Takata S, Yamada T, Thin Solid Films, 236(1-2), 27, 1993
  14. Hotovy I, Blue D, Hock S, Bennewitz O, Vacuum., 50, 41, 1998
  15. Lampert CM, Omstead TR, Yu PC, Sol. Energy Mater., 14(3-5), 161, 1986
  16. Pramanik P, Bhattachraya S, J. Electrochem. Soc., 137(12), 3869, 1990
  17. Varkey AJ, Fort AF, Thin Solid Films., 235, 47, 1993
  18. Chigane M, Ishikawa M, J. Chem. Soc., Faraday Trans., 94(24), 3665, 1998
  19. Utriainen M, Kroger-Laukkanen M, Niinisto L, Mater. Sci. Eng., B., 54, 98, 1998
  20. Surca A, Orel B, Pihlar B, Bukovec P, J. Electroanal. Chem., 408(1-2), 83, 1996
  21. Xie Y, Wang W, Qian Y, Yang L, Chen Z, J. Cryst. Growth., 167, 656, 1996
  22. Misho RH, Murad WA, Fatahalah GH, Abdul-Aziz IM. Al-Doori HM, Phys. Status Solidi Appl. Res., 109(2), K101, 1988
  23. Kadam LD, Bhosale CH, Patil PS, Tr. J. Phys., 21(10), 1037, 1997
  24. Lee Y, Jung J, Korean Chem. Eng. Res., 49(1), 28, 2011
  25. MacDougall B, Cohen M, J. Electrochem. Soc., 121(9), 1152, 1974
  26. Zamin M, Ives MB, J. Electrochem. Soc., 126(3), 470, 1979
  27. MacDougall B, Mitchell DF, Graham MJ, J. Electrochem. Soc., 127(6), 1248, 1980
  28. Visscher W, Barendrecht E, J. Appl. Electrochem., 10, 269, 1980
  29. Chukalovskaya TV, Karichev ZR, Vostryakova LA, Protection of metals., 13(2), 185, 1977
  30. Jeong SH, Jung SH, Lee KH, J. Korean Ind. Eng. Chem., 16(4), 461, 2005
  31. Park IH, Lee JW, Shin B, Chung CW, Theor. Appl. Chem. Eng., 11(1), 935, 2005
  32. Lalauze RL, Meunier JH, Oxid. Met., 12(2), 183, 1978
  33. Kim H, Chang YH, Hahm YM, J. Korean Ind. Eng. Chem., 8(5), 756, 1997
  34. Mor GK, Varghese OK, Paulose M, Shankar K, Grimes CA, Sol. Energy. Mater. Sol. Cells., 90, 2011, 2006
  35. Foll H, Christophersen M, Carstensen J, Hasse G, Mat. Sci. Eng. Rep., 39, 93, 2002