Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.50, No.2, 198-203, 2012
반응성 염료(RB-8, RB-49, RR-218)의 결정화 및 입도분포 특성
Reactive Dye(RB-8, RB-49, RR-218) in Crystallization and Characteristic of Population Density
염석결정화 방법으로 염료용액으로 부터 염료를 결정화하였다. 이번 연구에서 반응성 염료(RB-8, RB-49, RR-218)의 모액의 용해도와 결정화 속도를 연구하였다. 그 결과 연속식 결정화기에서 반응성 염료(RB-8, RB-49, RR-218)에 대한 결정화 속도식 RB-8에서 결정성장 속도 G=7.1×10^(-4)△C0.67와 핵생성 속도 B0=3.1×10^(15)△C[1.2×10^(-8)+△C0.7MT2]이고 RB-49는 결정성장 속도 G=5.2×10^(-4)C0.3441와 핵생성 속도 B0=7.2×10^(15)△C[3.3×10^(-8)+(△C)0.7MT2], RR-218의 결정성장 속도 G=4.4×10^(-4)C0.2361와 핵생성 속도 B0=6.3×10^(15)△C[7.9×10^(-8)+(△C)0.7MT2]의 실험식으로 표현할 수 있다. 또한 특성 곡선 법을 적용하여 입도분포를 계산한 결과 실험식과 일치하는 결과를 확인할 수 있었다.
Salting-out technique was adopted to crystallize dye crystals from dye solution. In this research solubility of dye solution and crystallization kinetics of Reactive dye (RB-8, RB-49, RR-218) was investigated. The empirical expressions of salting-out crystallization kinetics for Reactive dye (RB-8, RB-49, RR-218) in continuous MSMPR crystallizer was RB-8 in crystal growth kinetics G=7.1×10^(-4)△C0.67 and nucleation kinetics B0=3.1×10^(15)△C [1.2×10^(-8) +△C0.7MT2], RB-49 in crystal growth kinetics G=5.2×10^(-4)△C0.3441 and nucleation kinetics B0=7.2×10^(15)△C [3.3×10^(-8) +(△C)0.7MT2], RR-218 in crystal growth kinetics G=4.4×10^(-4)△C0.2361 and nucleation kinetics B0=6.3×10^(15)△C [7.9×10^(-8)+(△C)0.7MT2]. Also, comparison of calculated crystal size distribution applying to characteristic curve method with experimental crystal size showed good agreement.
[References]
  1. Randolph AD, Larson MA, Theory of Particulate Processes, 2nd ed., Academic Press, New York, 1988
  2. Nyvlt J, “Industrial Crystallization from Solution,” Butterworth & Co. Ltd., London, 1971
  3. Mullin JW, “Crystallization,” 3rd ed., Butterworth-Heinemann, London, 1993
  4. PamPlin BR, “Crystal Growth,” 2nd ed., Pergamon Press, London, 1980
  5. Tavare NS, “Industrial Crystallization Process Simulation Analysis and Design,” Plenum Press New York and London, 1995
  6. Mersmann A, Crystallization Technology Handbook,” Marcel Dekker x, Inc. New York-Basel-Hong Kong, 1995
  7. Chen MR, Larson MA, Chem. Eng.Science., 40(7), 1287, 1985
  8. Juzaszek P, Larson MA, AIChE Journal., 23(4), 460, 1977
  9. Han HK, Lee SI, Lee CS, Korean J. Chem. Eng., 28(1), 58, 1989
  10. Kim HD, Park HS, Shin YJ, Lee CS, Korean J. Chem. Eng., 23(3), 145, 1985
  11. Shin YJ, Yun CH, Lee CS, Int. Chem. Eng., 26(2), 348, 1986
  12. Jones AG, Mullin JW, Chem. Eng. Sci., 29(1), 105, 1974
  13. Mullin JW, Nyvlt J, Chem. Eng. Sci., 26(3), 369, 1971
  14. Garside J, Gaska C, Mullin JW, J. Cryst. Growth., 13-14, 510, 1972
  15. Nyvlt J, “The Kinetics of Industrial Crystallization,” Elsevier, Amsterdam-Oxford-NewYork-Tokyo, 1985
  16. Han HK, Jung HK, Korean J. Chem. Eng., 26(1), 246, 2009
  17. Jung HK, Han HK, Kwun CS, Kang HJ, Theor. Appl. Chem. Eng., 14(1), 426, 2008
  18. Jung HK, Han HK, Kwun CS, Kang HJ, Theor. Appl. Chem. Eng., 14(2), 2632, 2008
  19. Pyun YR, Han HK, Jung HK, Kim BM, Theor. Appl. Chem. Eng., 13(2), 1620, 2007
  20. Han HK, Jeong OH, Lim MH, Kim JA, Theor. Appl. Chem. Eng., 11(1), 329, 2005
  21. Kim JA, Han HK, Kim BM, Pyun YR, Theor. Appl. Chem. Eng., 12(2), 1580, 2006
  22. Kim BM, Han HK, Jung HK, Pyun YR, Theor. Appl. Chem. Eng., 13(2), 1376, 2007
  23. Kwon CS, Jung HK, Kang HJ, Han HK, Theor. Appl. Chem. Eng., 14(1), 286, 2008