Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.50, No.1, 162-166, 2012
전기증착법을 이용한 ZnO 막대구조의 형성 및 염료감응형 태양전지에의 응용
Fabrication of ZnO Rod by Electrodeposition and Its Application to Dye Sensitized Solar Cell
본 연구에서는 전해증착법과 열처리를 통하여 ITO 투명전극 위에 고밀도의 ZnO 막대구조를 형성하는 방법을 조사하였다. 증착과정에서 Zn(OH)2와 ZnO가 함께 형성되는 것을 고려할 때 전기화학적 ZnO 증착효율은 33% 이하를 나타내었다. 500 ℃열처리 후 ZnO는 (002)를 선택적으로 갖는 결정구조를 형성하며, 나노막대 구조의 성장속도는 0.986 μm/hr로 측정되었다. 그리고 전기화학적으로 제조한 ZnO 막대를 염료감응 태양전지의 전극으로 사용시 측정된 전지효율은 0.21%로서 태양전지용 전극으로서의 가능성을 확인하였다.
High density of ZnO nanorods were fabricated by electrochemical deposition and subsequent heat treatment. Formation of Zn(OH)2 and ZnO during electrodeposition indicated that the electrodeposition efficiency of ZnO was below 33%. ZnO rod has a preferential (200) growth plane after heat treatment at 500 ℃ and the growth rate of ZnO rod was measured to be 0.986 μm/hr. Dye sensitized solar cell(DSC) showed the efficiency of 0.21% when electrochemically prepared ZnO rod was used as an electrode. It suggests the possible application of ZnO rod structure in the DSC.
[References]
  1. Goldberger J, Sirbuly DJ, Law M, Yang P, J. Phys. Chem. B, 109(1), 9, 2005
  2. Saito N, Haneda H, Sekiguchi T, Ohashi N, Sakaguchi I, Koumoto K, Adv. Mater., 14(6), 418, 2002
  3. Wan Q, Li QH, Chen YJ, Wang TH, He XL, Li JP, Lin CL, Appl. Phys. Lett., 84(18), 3654, 2004
  4. Law M, Sirbuly DJ, Johnson JC, Goldberger J, Saykally RJ, Yang P, Science., 305(5688), 1269, 2004
  5. Keis K, Magnusson E, Lindstorm H, Lindquist SE, Hagfelt A, Sol. Energy Mater. Sol. Cells., 73(1), 51, 2002
  6. Duan XF, Lieber CM, Adv. Mater., 12(4), 298, 2000
  7. Li SY, Lin P, Lee CY, Tseng TY, J.Appl. Phys., 95(7), 3711, 2004
  8. Sen S, Leary DJ, Bauer CL, Thin Solid Films., 94(1), 7, 1982
  9. Haase M, Weller H, Henglein A, J. Phys.Chem., 92(2), 482, 1998
  10. Park WI, Kim DH, Jung SW, Yi GC, Appl. Phys. Lett., 80(22), 4232, 2002
  11. Roy VAL, Djurisic AB, Chan WK, Gao J, Lui HG, Surya C, Appl. Phys.Lett., 83(1), 141, 2003
  12. Izaki M, Omi T, Appl. Phys. Lett., 68(17), 2439, 1996
  13. Donderis V, Hernandez-Fenollosa MA, Damonte LC, Mari B, Cembrero J, Superlattices Microstruct., 42(1-6), 461, 2007
  14. Vayssieres L, Keis K, Lindquist SE, Hagfeldt A, J. Phys. Chem. B, 105(17), 3350, 2001
  15. Vayssieres L, Adv. Mater., 15(5), 464, 2003
  16. Yadav HK, Sreenivas K, Gupta V, Singh SP, Katiyar RS, J. Mater. Res., 22(9), 2404, 2007
  17. Pauporte T, Lincot D, J. Electrochem. Soc., 148(4), C310, 2001
  18. Fujimura N, Nishihara T, Goto S, Ito T, J. Cryst. Growth., 115(1-4), 816, 1991