Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.50, No.1, 155-161, 2012
강인한 바이오필터설계를 위한 바이오필터모델: 2. 동적 바이오필터모델
Biofilter Model for Robust Biofilter Design: 2. Dynamic Biofilter Model
바이오필터에서 폐가스에 포함된 유기오염물을 제거하는 효율에 대한 미디움 흡착능력의 영향을 포괄하는 강인한 동적 바이오필터 모델링을 수행하였다. 특히 비정상상태의 운전 조건 하에서도 바이오필터에 의해 처리된 폐가스 내의 유기오염물 농도를 구하기 위한 바이오막, 가스상, 수착(sorption) 부피 및 흡착상의 네가지 모델요소로 구성된 독창적인 모델인 개선된 프로세스럼핑 모델을 제시하였다. 이전의 프로세스럼핑모델에서는 담체에 대한 VOC의 평형 흡착량이 담체의 수착부피 내의 용존 VOC 농도에 선형적으로 비례한다는 가정 하에서 식을 유도하였으므로, 폐가스 처리에 적용이 제한적이었다. 따라서 실제 적용을 위해서 Freundlich 식과 같은 흡착관계식을 프로세스럼핑 모델에 접합하여 모든 농도의 VOC의 경우에 유효한 강인한 프로세스럼핑 모델을 구축하였다. 프로세스럼핑 모델 파라미터 중에서 바이오필터 미디움의 흡착과 관련한 파라미터 값들을 선행논문의 동적 흡착칼럼실험 및 문헌을 통하여 구하였다. 또한 에탄올을 포함한 폐가스처리를 위한 비정상상태의 바이오필터실험을 수행하였고, 그 실험결과와 여러 가지 Thiele modulus(φ) 값을 가지는 동적 바이오필터모델링 예측 값과 비교하였다. 이때에 구하여진 Thiele modulus(φ) 값은 0.03에 근접하였다.
A dynamic biofilter model was suggested to integrate the effect of biofilter-medium adsorption capacity on the removal efficiency of volatile organic compound (VOC) contained in waste air. In particular, the suggested biofilter model is composed of four components such as biofilm, gas phase, sorption volume and adsorption phase and is capable of predicting the unsteady behavior of biofilter-operation. The process-lumping model previously suggested was limited in the application for the treatment of waste air since it was derived under the assumption that the adsorbed amount of VOC equilibrated with biofilter-media would be proportional to the concentration of dissolved VOC in the sorption volume of biofilter-media. Therefore a Freundlich adsorption isotherm was integrated into a robust biofilter process-lumping model applicable to a wide range of VOC concentration. The values of model parameters related to biofilter-medium adsorption were obtained from the dynamic adsorption column experiments in the preceding article and literature survey. Furthermore a separate biofilter experiment was conducted to treat waste air containing ethanol and the experimental result was compared with the model predictions with various values of Thiele modulus (φ). The obtained value of Thiele modulus (φ) was close to 0.03.
[References]
  1. Liu PKT, Gregg RL, Sabol HK, Air & Waste., 44, 209, 1994
  2. Hodge DS, Devinny JS, Environmental Process., 13(3), 167, 1994
  3. Tang B, Hwang SJ, Hwang S, Hazardous Waste & Hazardous Materials., 12(3), 207, 1995
  4. Sorial GA, Smith FL, Suidan MT, Biswas P, J. Air Waste Manage. Assoc., 45, 801, 1995
  5. Hodge DS, Devinny JS, J. Environm. Eng., 121(1), 21, 1995
  6. Shareefdeen Z, Baltzis BC, Chem. Eng. Sci., 49(24), 4347, 1994
  7. Zarook SM, Shaikh AA, Ansar Z, Chem. Eng. Sci., 52(5), 759, 1997
  8. Lim KH, J. Chem. Eng. Jpn., 34(6), 766, 2001
  9. Lim KH, J. Chem. Eng. Jpn., 34(6), 776, 2001
  10. Lim KH, Lee EJ, Korean J. Chem. Eng., 20(2), 315, 2003
  11. Lee EJ, Seo KS, Jeon WS, Lim KH, Korean Chem. Eng. Res., 50(1), 149, 2012
  12. Speitel GE, Dovantzis K, Digiano FA, J. Environm.Eng., 113(1), 32, 1987
  13. Speitel GE, Digiano FA, J. Am. Water Works Assoc., 79(1), 64, 1987
  14. Hand DW, Crittenden JC, Thacker WE, J. Environm. Eng., 109(1), 82, 1983
  15. Mohseni M, Allen DG, Chem. Eng. Sci., 55(9), 1545, 2000
  16. Mackey D, Multimedia environmental models : The fugacity approach, Lewis publishers, Chelsea, MI, U.S.A., 1991
  17. Meylan WM, Howard PH, J. Pharm. Sci., 84, 83, 1995
  18. Meylan WM, Howard PH, Environ. Toxicol. Chem., 10, 1283, 1991
  19. Lee EJ, Lim KH, Korean Chem. Eng. Res., 46(5), 994, 2008
  20. Shareefdeen Z, Baltzis BC, Oh YS, Bartha R, Biotechnol. Bioeng., 41, 512, 1993