Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.50, No.1, 149-154, 2012
강인한 바이오필터설계를 위한 바이오필터모델: 1. 바이오필터 담체의 흡착거동
Biofilter Model for Robust Biofilter Design: 1. Adsorption Behavior of the Media of Biofilter
바이오필터담체가 충전된 흡착칼럼 운전 시의 흡착 및 탈착거동에 대하여 조사하였다. 에탄올을 휘발성유기화합물(VOC)로서 함유하는 폐가스를 처리하기 위한 연속동적흡착 실험을 바이오필터공정과 같은 90% 이상의 상대습도에서 수행하였다. 에탄올 1,000 ppmv(or 2,050 mg ethanol/m3)를 포함하는 폐가스 2 L/min을 흡착칼럼에 공급하였을 때에 흡착칼럼 출구에서의 파과점과 흡착평형에 이르는 시간은 1단 시료구에서 보다 각각 10배와 3배 만큼 지연되었다. 한편 에탄올 2,000 ppmv(or 4,100mg ethanol/m3)를 포함하는 폐가스의 경우에는 각각 9배와 3배 지연되었다. 이와 같이 흡착칼럼 출구에서 지연기간의 비는 공급농도와 무관하게 서로 거의 일치하였음이 관찰되었다. 또한 1단 시료구와 출구에서 비교한 유입폐가스의 에탄올농도의 10%를 보이는 탈착시간 지연비도 약 1.5배로서 거의 일치하였다. 한편 미생물활성과 멸균공정의 흡착평형에 대한 영향에 대하여 조사하였다. 멸균된 입상 활성탄으로 충전된 vial의 기상 에탄올 농도는 멸균되지 않은 입상 활성탄으로 충전된 경우와 거의 일치하였다. 그러나 퇴비(compost)나 입상 활성탄/퇴비 혼합물의 경우에는 멸균 안한 경우가 멸균한 경우보다 기상에서의 에탄올 농도가 현저하게 높았다.
The adsorption and desorption behavior of biofilter-medium was investigated on the performance of an adsorption column. Continuous flow-isothermal adsorption experiments were performed to treat waste air containing such a VOC as ethanol under the same condition of > 90% relative humidity as the condition of the feed to a biofilter process. In case of feeding waste air containing ethanol of 1,000 ppmv (or 2,050 mg ethanol/m3) to the adsorption system at the rate of 2 L/min, the onsets of its breakthrough and reaching the state of dynamic equilibrium at the exit had been delayed 10 and 3 times, respectively, later than those at the 1st stage sampling port. Moreover, in case of 2,000 ppmv (or 4,100 mg ethanol /m3), they had been delayed 9 and 3 times,respectively. Thus, regardless of feeding concentration, the ratios of delaying period were observed to be quite consistent each other at the exit of the adsorption column. With regard to the period of desorption, the ratios of delaying period were consistent each other to be 1.5 for both cases. In addition, the effect of microbial activity and sterilization-process was studied on adsorption equilibrium. The ethanol concentration in the vapor phase of vials packed with sterilized granular activated carbon (GAC) was quite consistent to that with unsterilized GAC. However, the ethanol concentrations in the vapor phase of vials packed with unsterilized compost and the unsterilized mixture of GAC and compost were higher than those with sterilized compost and the sterilized mixture of GAC and compost, respectively.
[References]
  1. Eckhart A, in Proceedings of Biological Treatment of Industrial Waste Gases, Dechema, Heidelberg, Germany, Mar, 24, 1987
  2. Hirai M, Ohtake M, Shoda M, J. Ferment. Bioeng., 70, 334, 1990
  3. Shareefdeen Z, Baltzis BC, Oh YS, Bartha R, Biotechnol. Bioeng., 41, 512, 1993
  4. Tang B, Hwang SJ, Hwang S, Hazardous Waste & Hazardous Materials., 12(3), 207, 1995
  5. Lee EY, Cho KS, Ryu HW, J. Biosci. Bioeng., 99(6), 611, 2005
  6. Galera MM, Cho E, Tuuguu E, Park SJ, Lee C, Chung WJ, J. Hazard. Mater., 152(2), 624, 2008
  7. Pantoja JLR, Sader LT, Damianovic MHRZ, Foresti E, Silva EL, Chem. Eng. J., 158(3), 441, 2010
  8. Ottengraf SPP, Exhaust gas purification, In: Rehm HJ, Reed G (eds), Biotechnology, Weinheim: VCH Verlagsgesel-Ischaft, 8, 426, 1986
  9. Ottengraf SPP, Meesters JJP, Van Den Oever AHC, Rozema HR, Bioprogress Eng., 1(1), 61, 1986
  10. Buchner R, “Auswirkungen Verschiedener Betriebszustande in der Biologischen Abluftreinigung am Beispiel von Biofiltern,” Ph. D. Thesis, T.U. Wien, Austria, 1989
  11. Leson G, Winer AM, J. Air Waste Manage. Assoc., 41, 1045, 1991
  12. Deshusses MA, Hamer G, Bioprocess Eng., 9, 141, 1993
  13. Deshusses MA, Dunn IJ, “Modelling Experiments on the Kinetics of Mixed-solvent Removal from Waste Gas in a Biofilter,” in Proceedings of the 6th European Congresson Biotechnology, Alberghina L, Frontali L, Sensi P, Eds., Elsevier Science Publishers B. V., Amsterdam, The Netherlands, 1191, 1994
  14. Deshusses MA, Hamer G, Dunn IJ, Environ. Sci. Technol., 29, 1048, 1995
  15. Deshusses MA, Hamer G, Dunn IJ, Biotechnol. Bioeng., 49(5), 587, 1996
  16. Deshusses MA, J. Environ.Eng., 123(6), 563, 1997
  17. Hodge DS, Devinny JS, Environmental Process., 13(3), 167, 1994
  18. Hodge DS, Devinny JS, J. Environ. Eng., 121(1), 21, 1995
  19. Tang B, Hwang SJ, Hwang S, Hazardous Waste & Hazardous Materials., 12, 207, 1995
  20. Shareefdeen Z, Baltzis BC, Chem. Eng. Sci., 49(24), 4347, 1994
  21. Zarook SM, Shaikh AA, Ansar Z, Chem. Eng. Sci., 52(5), 759, 1997
  22. Delhomenie MC, Bibeau L, Gendron J, Brzezinski R, Heitz M, Chem. Eng. J., 94(3), 211, 2003
  23. Oh DI, Song J, Hwang SJ, Kim JY, J. Hazard. Mater., 170(1), 144, 2009
  24. Sorial GA, Smith FL, Suidan MT, Biswas P, J.Air Waste Manage. Assoc., 45, 801, 1995
  25. Liu PKT, Gregg RL, Sabol HK, Air Waste., 44, 209, 1994
  26. Wani AH, Branion RMR, Lau AK, J. Environ. Sci. Health., A32, 2027, 1997
  27. Kaplan D, Nir I, Shmueli L, Carbon., 44, 3247, 2006
  28. Linders MJG, van den Broeke LJP, Kapteijn F, Moulijn JA, van Bokhoven JJGM, AIChE J., 47(8), 1885, 2001
  29. Biron E, Evans MJB, Carbon., 36, 1191, 1998