Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.50, No.1, 141-148, 2012
다시마의 산 가수분해와 에탄올 발효 특성
Characteristics of Acid-hydrolysis and Ethanol Fermentation of Laminaria japonica
바이오에탄올 생산을 위한 대체 바이오매스 자원으로 갈조류인 다시마의 활용 가능성을 평가하기 위하여 산 가수분해와 에탄올 발효 특성을 검토하였다. 산 가수분해는 발효 가능한 당류의 생산량을 증가시켜 에탄올 생산량을 크게 증가시켰다. 최대 환원당 생산량은 묽은 황산(1.0 N)을 이용하여 130 ℃에서 6시간 가수분해하는 조건에서 다시마 건조무게 기준 135 mg/g이었다. Saccharomyces cerevisiae(ATCC 24858)는 글루코오스, 갈락토오스 및 만노오스와 같은 C6-당을 에탄올로 발효시킬 수 있지만 아라비노오스나 자일로오스와 같은 C5-당은 에탄올 발효기질로 이용하지 못하였다. 최적 발효시간은 글루코오스 48시간, 갈락토오스 72시간, 만노오스 96시간으로 단당류에 따라 달랐다. 그럼에도 불구하고 S. cerevisiae를 이용하여 35 ℃에서 96시간 발효를 통해 가수분해물로부터 얻을 수 있는 에탄올 생산량은 가수분해물 중의 총환원당으로부터 얻을 수 있는 이론적 생산량에 비해 4배 정도 높은 다시마 건조무게 기준 242 mg/g에 달하였다. 이는 가수분해물에 용존되어 있는 비환원당과 올리고당류들이 에탄올 발효에서 중요한 역할을 하고 있음을 나타낸다. 가수분해 용액 대비 다시마의 주입비율을 1에서 5%(w/v)로 증가시킴에 따라 에탄올 농도는 2.4에서 9.2 g/L로 증가하는 반면 단위무게당 에탄올 생산량은 242에서 185 mg/g으로 감소하였다. 다시마의 에탄올 생산성은 대략 7,400~9,600 kg/ha/year 정도로 평가되어 다시마가 바이오에탄올 생산을 위한 바이오매스 자원으로 매우 유용함을 알 수 있었다.
In order to study the utilization of brown seaweed Laminaria japonica as an alternative renewable feedstock for bioethanol production, the properties of acid hydrolysis and ethanol fermentation were investigated. The acid hydrolysis enhanced the final yield of fermentable sugars, which led great increase of ethanol productivity. The maximum yield of reducing sugars reached 135 mg/g-dry Laminaria japonica after 1.0N sulfuric acid-hydrolysis at 130 ℃ for 6 h. The Saccharomyces cerevisiae (ATCC 24858) could ferment C6-sugars like glucose, galactose and mannose into ethanol, but not C5-sugars like arabinose and xylose. Optimal fermentation time varied with sugars; 48 h for glucose, 72 h for galactose, and 96 h for mannose. Nevertheless, the ethanol yield from the hydrolysate reached 242 mg/g-dry Laminaria japonica after fermentation by the S. cerevisiae at 35 oC for 96 h, which corresponds to approximately 4 times more than the theoretical yield from total reducing sugars in the hydrolysates. It indicates that the non-reducing sugars or oligosaccharides dissolved in the hydrolysate played an important role in producing bioethanol. The ethanol concentration linearly increased from 2.4 to 9.2 g/L, while the ethanol yield per dry weight of biomass decreased from 242 to 185 mg/g, with increasing the ratio of biomass to acid solution from 1 to 5% (w/v). The bioethanol yield estimated was approximately 7,400~9,600 kg/ha/year, and indicated that Laminaria japonica is a promissing feedstock for bioethanol production.
[References]
  1. Balata M, Balata H, Oz C, Prog. Energy Combustion Sci., 34, 551, 2008
  2. Nigam P, Singh A, Prog. Energy Combust. Sci., 37, 52, 2011
  3. Sims REH, Mabee W, Saddler JN, Taylor M, Bioresour.Technol., 101, 1570, 2011
  4. Delgenes JP, Moletta R, Navarro JM, Process Biochem., 25, 132, 1990
  5. Ahring BK, Jensen K, Nielsen P, Bjerre AB, Schmidt AS, Bioresour. Technol., 58(2), 107, 1996
  6. Nigam JN, J. Biotechnol., 87, 17, 2001
  7. Saha BC, Iten LB, Cotta MA, Wu YV, Process Biochem., 40, 3693, 2005
  8. John RP, Anisha GS, Nampoothiri KM, Pandey A, Bioresour. Technol., 102, 186, 2011
  9. Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Plant J., 54, 621, 2008
  10. Zhang X, Hu Q, Sommerfeld M, Puruhito E, Chen Y, Bioresour. Technol., 101, 5297, 2010
  11. Singh A, Nigam PS, Murphy JD, Bioresour. Technol., 102, 10, 2011
  12. Goh CS, Lee KT, Renew.Sustain. Energy Rev., 14, 842, 2010
  13. Guerriero G, Fugelstad J, Bulone V, J. Integr.Plant Biol., 52, 161, 2010
  14. Okuda K, Oka K, Onda A, Kajiyoshi K, Hiraoka M, Yanagisawa K, J. Chem. Technol. Biotechnol., 83(6), 836, 2008
  15. Aresta M, Dibenedetto A, Barberio G, Fuel Process. Technol., 86(14-15), 1679, 2005
  16. Horn SJ, Aasen IM, Østgaard K, J. Ind. Microbiol.Biotechnol., 24, 51, 2000
  17. Lee SM, Lee JH, Appl. Chem. Eng., 21(2), 154, 2010
  18. Wang X, Liu X, Wang G, J. Integrative Plant Biology., 53(3), 246, 2011
  19. Miller GL, Anal. Chem., 31, 426, 1959
  20. Cadoche L, Lopez GD, Biol. Wastes., 30, 153, 2009
  21. Chen M, Zhao J, Xia LM, Biomass Bioenerg., 33(10), 1381, 2009
  22. Van Groenestijn J, Hazewinkel O, Bakker R, Zuckerindustrie., 131, 639, 2006
  23. Dawson L, Boopathy R, Bio.Resour., 3, 452, 2008
  24. Abedinifar S, Karimi K, Khanahmadi M, Taherzadeh MJ, Biomass Bioenerg., 33(5), 828, 2009
  25. Rabelo SC, Maciel R, Costa AC, Appl. Biochem. Biotechnol., 153(1-2), 139, 2009
  26. Harun R, Danquah MK, Process Biochem., 46, 304, 2011
  27. Jeffries TW, Jin YS, Adv. Appl. Microbiol., 47, 221, 2000
  28. Torget R, Hatzis C, Hayward TK, Hsu TA, Philippidis GP, Appl. Biochem. Biotechnol., 58, 85, 1996
  29. Ryu JG, Cho JH, Kim DY, Strategy and Policy Direction for Bio-industrialization of Marine Algae,” Korea Maritime Institute, Policy Study Data, 2009
  30. Ge L, Wang P, Mou H, Renewable Energy., 36, 84, 2011
  31. Kloareg B, Quatrano RS, Oceanogr. Mar. Biol. Ann. Rev., 26, 259, 1998
  32. Percival E, British Phycological Journal., 14, 103, 1979
  33. Park JI, Woo HC, Lee JH, Korean Chem. Eng. Res., 46(5), 833, 2008
  34. Kim GS, “Study on Suitability of Bio-energy Production using Marine Algae,” GOVP1200819997, Ministry of Knowledge Economy, 2007
  35. Delgenes JP, Moletta R, Navarro JM, Process Biochemistry., 25, 132, 1990
  36. Polycarpou P, Renewable Energy., 34, 2525, 2009
  37. Linoj Kumar NV, Dhavala P, Goswami A, Maithel S, Asian Biotechnol. Develop. Rev., 8, 31, 2006
  38. Demirbas A, Energy Sources, 27(4), 327, 2005
  39. Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Bioenergy.Res., 1, 20, 2008