Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.50, No.1, 135-140, 2012
이산화탄소 흡수제의 화학구조별 반응열량 특성 연구
Analysis of the Heat of Absorption Based on the Chemical Structures of Carbon Dioxide Absorbents
반응열량계를 사용하여 1, 2, 3차 아민 수용액과 이산화탄소의 반응열을 각각 측정하였다. 이를 통해 MEA(monoethanolamine, 1차 아민), EAE(2-(ethylamino) ethanol, 2차 아민), MDEA (N-methyldiethanolamine, 3차 아민) 30wt% 수용액이 40 ℃에서 이산화탄소와 반응시 발생하는 반응열을 측정하고 이를 CO2의 loading ratio에 따라 어떻게 변화하는지 평가하였다. 또한, 입체장애 구조를 가지는 AMP(2-amino-2-methyl-1-propanol, 1차 아민), DEA(diethanolamine, 2차 아민), TEA(triethanolamine, 3차 아민) 30 wt% 수용액의 반응열을 각각 측정하여 입체장애 구조가 반응열에 미치는 영향을 살펴보았다. 그 결과, 흡수제의 입체장애 유무와 관계없이 1차 > 2차 > 3차 아민 순으로 반 응열이 증가함을 확인하였다. 그리고 입체장애 아민이 동일 차수의 비 입체장애 아민보다 상대적으로 반응열이 낮지만 그 차이는 크지 않음을 확인하였다.
In this study, the heats of absorption of CO2 with aqueous solutions of primary, secondary and tertiary amine aqueous solutions were measured in the commercial reaction calorimeter SIMULAR (HEL, UK). The heats of absorption of 30 wt% amine aqueous solutions of MEA (monoethanolamine, primary amine), EAE(2-(ethylamino)ethanol, secondary amine), and MDEA (methyldiethanolamine, tertiary amine) were measured as function of the CO2 loading ratio at 40 ℃, in each case. In addition, the heats of absorption of sterically -hindered amine aqueous solutions of AMP(2-amino-2-methyl-1-propanol, primary amine), DEA(diethanolamine, secondary amine) and TEA(triethanolamine, tertiary amine) were measured to observe the steric hindrance effect. The heat of absorption is high in the following order regardless of the steric hindrance: primary amine > secondary amine > tertiary amine. The heats of absorption of amines having sterically-hindered substituents surrounding nitrogen atoms are relatively low compare to that of sterically-free amines, although the difference is very small.
[References]
  1. Lee JH, Kim JH, Lee IY, Jang KR, Shim JG, J. Chem. Eng. Jpn., 43(8), 720, 2010
  2. Dallos A, Altsach T, Kotsis L, J. Thermal Anal. Cal., 65, 419, 2001
  3. Kim I, Svendsen HF, Int. J. Greenhouse Gas Control., 5, 390, 2011
  4. Carson JK, Marsh KN, Mather AE, J. Chem. Thermodyn., 32(9), 1285, 2000
  5. Kim I, Hoff KA, Hessen ET, Haug-Warberg T, Svendsen HF, Chem. Eng. Sci., 64(9), 2027, 2009
  6. Song HJ, Lee S, Park K, Lee J, Spah DC, Park JW, Filburn TP, Ind. Eng. Chem. Res., 47(24), 9925, 2008
  7. Feron PHM, Int. J. Greenhouse Gas Control., 4, 152, 2010
  8. Meisen A, Shuai X, “Research and Development Issues in CO2 Capture,” Energy Convers. Manage., 37, 1997
  9. Kohl AL, Nielsen R, Gas Purification, 5th ed., Gulf Publishing Co., Houston, U.S.A., 1997
  10. Goto K, Okabe H, Shimizu S, Onoda M, Fujioka Y, Energy Procedia., 1, 1083, 2009