Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.50, No.1, 72-75, 2012
Strain-free AlGaN/GaN 자외선 센서용 나노선 소자 연구
Strain-free AlGaN/GaN Nanowires for UV Sensor Applications
Strain-free AlGaN/GaN 나노선을 기판에 분산시킨 후 E-beam lithography(EBL)를 이용해 단일 나노선 자외선 센서를 제작하였다. 나노선의 구조적, 광학적 특성을 분석하기 위해 focused ion beam(FIB), photoluminescence, micro-Raman spectroscopy를 이용하여 나노선의 strain 및 형태를 조사하였다. 자외선 센서로서의 특성 여부를 확인하기 위하여 빛을 차단 한 조건과 자외선을 조사하는 조건하에서 current-voltage(I-V) 특성을 측정하였으며 각각 9.0 μS과 9.5 μS의 전기전도도(conductance)를 얻었다. 자외선 조사 조건하에서 excess carrier의 증가로 인해 전기전도도가 약 5%가 향상되었음을 알 수 있었다. 자외선을 반복적으로 조사하는 과정의 실험을 통해 우수한 포화 시간(saturation time)과 감쇠 시간(decay time)을 얻었다. 따라서 AlGaN/GaN 나노선은 자외선 센서로서 많은 가능성을 가지고 있음을 확인하였다.
In our experiments, strain-free nanowires(NWs) were dispersed on to the substrate, followed by e-beam lithography(EBL) to fabricate single nanowire ultraviolet(UV) sensor devices. Focused-ion beam(FIB), micro-Raman spectroscopy and photoluminescence were employed to characterize the structural and optical properties of AlGaN/GaN NWs. Also, I-V characteristics were obtained under both dark condition and UV lamp to demonstrate AlGaN/GaN NWbased UV sensors. The conductance of a single AlGaN/GaN UV sensor was 9.0 μS(under dark condition) and 9.5 μS (under UV lamp), respectively. The currents were enhanced by excess carriers under UV lamp. Fast saturation and decay time were demonstrated by the cycled processes between UV lamp and dark condition. Therefore, we believe that AlGaN/GaN NWs have a great potential for UV sensor applications.
[References]
  1. Ponce FA, Bour DP, Nature, 386(6623), 351, 1997
  2. Watanabe K, Taniguchi T, Kanda H, Nature Materials., 3, 404, 2004
  3. Horiuchi N, Nature Photonics., 4, 738, 2010
  4. Huang Y, Duan XF, Cui Y, Lieber CM, Nano Lett., 2, 101, 2002
  5. Simpkins BS, Pehrsson PE, Laracuente AR, Appl. Phys. Lett., 88, 072111, 2006
  6. Hersee SD, Sun X, Wang X, Nano Lett., 6, 1808, 2006
  7. Gottschalch V, Wagner G, Bauer J, Paetzelt H, Shirnow M, J. Cryst. Growth, 310(23), 5123, 2008
  8. Parish G, Keller S, Kozodoy P, Ibbetson JP, Marchand H, Fini PT, Fleischer SB, Denbaars SP. Mishra UK, Appl. Phys.Lett., 75, 247, 1999
  9. Waltereit P, Brandt O, Trampert A, Grahn HT, Menniger J, Ramsteiner M, Reiche M, Ploog KH, Nature., 406, 865, 2000
  10. Adivarahan V, Tamulaitis G, Srinivasan R, Yang J, Khan MA, Shur MS, Gaska R, Simin G, Appl. Phys. Lett., 79, 1903, 2001
  11. Lee JW, Moon KJ, Ham MH, Myoung JM, Solid State Communications., 148, 194, 2008
  12. Pau JL, Anduaga J, Rivera C, Navarro A, Alava I, Redondo M, Munoz E, Appl.Optics., 45, 7498, 2006
  13. Chin AH, Ahn TS, Li H, Vaddiraju S, Bardeen CJ, Ning CZ, Sunkara MK, Nano Lett., 7, 626, 2007
  14. Weber, W. H., “Raman Scattering in Materials Science,” Springer, Berlin, 2000
  15. Li Y, Xiang J, Qian F, Gradeeak S, Wu Y, Yan H, Blom DA, Lieber CM, Nano Lett., 6, 1468, 2006
  16. Qian F, Li Y, Gradeeak S, Wang D, Barrelet CJ, Lieber CM, Nano Lett., 4, 1975, 2004
  17. Kisielowski C, Kruger J, Ruvimov S, Suski T, Ager JW, Jones E, Liliental-Weber Z, Rubin M, Weber ER, Bremser MD, Davis RF, Phys. Review B., 54, 17745, 1996