Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.50, No.1, 50-54, 2012
수퍼커패시터 전극을 위한 폴리아닐린/TiO2 복합체의 제조 및 전기화학적 성질
Preparation and Electrochemical Properties of PANI/TiO2 Composites for Supercapacitor Electrodes
본 연구는 커패시터 전극 응용을 위한 복합체 전극에 관련된 것으로 PANI와 PANI/TiO2로 구성된 수퍼커패시터 전극을 제조하여 cyclic voltammetry(CV)를 이용하여 6 M KOH 수용액에서 축전량(capacitance) 특성을 조사하였다. PANI/TiO2 복합체는 간단한 in-situ 방법을 통해 다양한 비율로 합성되었다. PANI/TiO2 복합체의 형태학(morphology)적 특징을 파악하기 위해서 주사전자현미경(SEM)과 투과전자현미경(TEM)을 통해 분석하였고, X선 회절 분석기(XRD)를 이용하여 복합체의 결정화도와 담지된 TiO2의 입자크기를 확인하였다. 전기화학적 시험 결과, 아닐린 대비 TiO2의 주입량이 10 wt%일 때 가장 우수한 축전량(626 Fg^(-1))을 나타냈고 높은 주사속도인 100 mVs^(-1)에서 286 Fg^(-1)의 비축전량을 나타내었다. 이는 폴리아닐린(PANI) 매트릭스(matrix)에 균일하게 담지된 TiO2(~6.5 nm)가 효과적인 연결 구조를 형성하여 전하이동현상이 증가하고, 축전이 가능한 반응면적이 증가한 것과 관련있다고 판단된다.
In this study, PANI and PANI/TiO2 composites were prepared as electrode materials for a supercapacitor application. Cyclic voltammetry (CV) was performed to investigate the supercapacity properties of these electrodes in an electrolyte solution of 6 M KOH. The PANI/TiO2 composites were polymerized by amount of various ratios through a simple in-situ method. The morphological properties of composites were analyzed by SEM and TEM method. The crystallinity of the composite and TiO2 particle size were identified using X-ray diffraction (XRD). In the electrochemical test, The electrode containing 10 wt% TiO2 content against aniline units showed the highest specific capacitance (626Fg^(-1)) and delivered a capacitance of 286 Fg^(-1) reversibly at a 100 mVs^(-1) rate. According to the surface morphology, the increased capacitance was related to the fact that nano-sized TiO2 particles (~6.5 nm) were uniformly connected for easy charge transfer and an enhanced surface area for capacitance reaction of TiO2 itself.
[References]
  1. Morimoto T, Hiratsuka K, Sanada Y, Kurihara K, J. Power Sources., 60(2), 239, 1996
  2. Arico AS, Bruce P, Scrosati B, Tarascon JM, Schalkwijk WV, Nat. Mater., 4, 366, 2005
  3. Frackowiak E, Phys. Chem. Chem. Phys., 9, 1774, 2007
  4. Wang S, Jiang SP, Wang X, Electrochimica Acta., 56, 3338, 2011
  5. Zhu, Murali S, Stoller MD, Velamakanni A, Piner RD, Ruoff RS, Carbon., 48, 2118, 2010
  6. Snook GA, Kao P, Best AS, J. Power Sources, 196(1), 1, 2011
  7. Amarnath CA, Chang JH, Kim D, Mane RS, Han SH, Sohn D, Mater. Chem. Phys., 113(1), 14, 2009
  8. Guan H, Fan LZ, Zhang HC, Qu XH, Electrochim. Acta, 56(2), 964, 2010
  9. Liu JL, Zhou MQ, Fan LZ, Li P, Qu XH, Electrochim. Acta, 55(20), 5819, 2010
  10. Li GC, Zhang CQ, Li YM, Peng HR, Chen KZ, Polymer, 51(9), 1934, 2010
  11. Lokhande CD, Dubal DP, Oh, Shim J, Curr. Appl. Phys., 11, 255, 2011
  12. Chepuri RK, Rao M, Vijayan M, Synthetic Metals., 158, 516, 2008
  13. Yuan C, Su L, Gao B, Zhang X, Electrochimica Acta., 54, 7039, 2008
  14. Panic VV, Dekanski AB, Stevanovic RM, J. Power Sources, 195(13), 3969, 2010
  15. Hu ZA, Xie YL, Wang YX, Mo LP, Yang YY, Zhang ZY, Mater. Chem. Phys., 114(2-3), 990, 2009
  16. Zhang Y, Feng H, Wu X, Wang L, Zhang A, Xia T, Dong H, Li X, Zhang L, Int. J. Hydrog. Energy., 34, 4889, 2009
  17. Wang DH, Kou R, Choi DW, Yang Z, Nie Z, Li J, Saraf LV, Hu D, Zhang J, Graff GL, Liu J, Pope, Askay M, ACS Nano., 23, 1587, 2010
  18. Wang DW, Li F, Zhao J, Ren W, Chen ZG, Tan J, Wu ZS, Gentle L, Lu GQ, Cheng HM, ACS Nano., 3, 1745, 2009
  19. Cheng Q, Tang J, Ma J, Zhang H, Shinya N, Qin LC, Carbon., 49, 2917, 2011
  20. Kim KS, Park SJ, Electrochimica Acta., 56, 6547, 2011
  21. Ko JM, Ryu KS, Kim S, Kim KM, J. Appl. Electrochem., 39(8), 1331, 2009
  22. Lai C, Zhang HZ, Li GR, Gao XP, J. Power Sources, 196(10), 4735, 2011
  23. Da D, Kim MG, Lee JY, Cho JP, Energy Environ. Sci., 2, 818, 2009
  24. Chen X, Mao SS, Chem. Rev., 107(7), 2891, 2007
  25. Zhao Y, Zhan L, Tian J, Nie S, Ning Z, Electrochimica Acta., 56, 1967, 2011
  26. Stoller MD, Park SJ, Zhu Y, Ahn JH, Ruoff RS, Nano Lett., 8, 3498, 2008
  27. Yan J, Wei T, Qiao WM, Shao B, Zhao QK, Zhang LJ, Fan ZJ, Electrochim. Acta, 55(23), 6973, 2010