Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.50, No.1, 41-49, 2012
Mo-Bi-V-Al 복합 산화물 촉매의 제조와 메탄 부분산화에 의한 메탄올 합성반응에 응용
Preparation of Mo-Bi-V-Al Mixed Oxide Catalysts and Its Application to Methanol Synthesis by Partial Oxidation of Methane
본 연구는 메탄 부분산화에 의한 메탄올 직접 합성을 위한 촉매 개발을 목표로 수행되었다. 이를 위하여 Mo-Bi-VAl 복합 산화물 촉매를 제조하였으며, 제조 방법에 따른 촉매 물성을 비교하고, 제조한 촉매를 이용하여 메탄올 합성 반응을 수행하여 그 결과를 검토하여 보았다. 졸-겔법으로 제조한 촉매가 공침법으로 제조한 촉매보다 비표면적이 훨씬 컸다. 입자가 작고 표면적이 클수록 부분산화반응보다는 완전산화반응이나 메탄올 산화반응이 더 잘 진행되어 메탄올의 선택도는 낮아지고 이산화탄소의 선택도는 증가하였다. 졸-겔법으로 제조한 촉매가 공침법으로 제조한 촉매보다 약 20 ℃ 정도 더 낮은 온도에서 더 높은 메탄올 선택도(13%)를 보였다. 두 방법으로 제조한 촉매의 XRD 분석 결과 두 촉매의 결정 구조가 서로 달랐다. 본 반응에서 압력이 증가할수록 완전산화 반응이 억제되고 부분산화 반응이 일어나서 메탄올의 선택도는 증가하였고 이산화탄소의 선택도는 감소하였다.
This study was aimed at the development of catalysts for the direct methanol synthesis by partial oxidation of methane. Mo-Bi-V-Al mixed oxide catalysts were prepared and characterized and used in the direct methanol synthesis reaction. The catalysts prepared by the sol-gel method had much larger surface areas than those prepared by the co-precipitation method. The larger the surface area was, the less the methanol selectivity was. The catalysts having larger surface area facilitate the complete oxidation of methane, decreasing the selectivity of methanol. The catalysts prepared by the sol-gel method showed higher methanol selectivity of 13% at 20 ℃ lower temperature than those prepared by the co-precipitation method. Through XRD analysis, it was revealed that the structures of the catalysts prepared by the two methods were different. In the reaction, methanol selectivity increased and carbon dioxide selectivity decreased with pressure due to the suppression of complete oxidation reaction at a high pressure.
[References]
  1. Lange JP, Catal. Today, 64(1-2), 3, 2001
  2. GRADASSI MJ, GREEN NW, Fuel Process. Technol., 42(2-3), 65, 1995
  3. Mizsey P, Newson E, Truong TB, Hottinger P, Appl. Catal. A: Gen., 213(2), 233, 2001
  4. Sun YK, Lee WY, Korean J. Chem. Eng., 12(1), 36, 1995
  5. Choi WJ, Park JY, Kim MS, Park HS, Hahm HS, J. Ind. Eng. Chem., 7(4), 187, 2001
  6. Bielanski A, Haber J, Oxygen in Catalysis, Marcel Dekker Inc., 423, 1991
  7. Taylor SH, Hargreaves JSJ, Hutchings GJ, Joyner RW, Lembacher CW, Catal. Today, 42(3), 217, 1998
  8. Aoki K, Ohmae M, Nanba T, Takeishi K, Azuma N, Ueno A, Ohfune H, Hayashi H, Udagawa Y, Catal. Today, 45(1-4), 29, 1998
  9. Zhang Q, Dehua H, Han ZS, Zhang X, Zhu Q, Fuel., 81(11-12), 1599, 2002
  10. Bannares MA, Alemany LJ, Granados ML, Faraldos M, Fierro JLG, Catal. Today., 23(1-3), 73, 1997
  11. Volpe MA, Appl. Catal. A: Gen., 210(1-2), 355, 2001
  12. Shin KS, “Direct Methanol and Formaldehyde Synthesis from Methane,” M. S. Thesis, Myongji University, Yongin, 2002
  13. Brinker CG, George WS, The Physics and Chemistry of Sol-Gel Processing, Academic Press, New York, 1990
  14. Bae S, Choung S, J. Korean Ind. Eng. Chem., 7(2), 269, 1996
  15. Klabunde KJ, Nanoscale Materials in Chemistry, Wiley, 85, 2001
  16. Hwang UY, Lee SW, Lee JW, Park HS, Koo KK, Kim YR, Yoon HS, Yoo SJ, HWAHAK KONGHAK, 39(2), 199, 2001
  17. Hunter NR, Gesser HD, Morton LA, Yarlagadda PS, Appl. Catal., 57, 45, 1990