Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.50, No.1, 35-40, 2012
1-(2-methoxyethyl)-3-methylimidazolium Methanesulfonate 이온성 액체 합성 및 CO2 흡수 특성 연구
Study of CO2 Absorption Characteristic and Synthesis of 1-(2-methoxyethyl)-3-methylimidazoLium Methanesulfonate Ionic Liquid
본 연구에서는 화석 연료 사용시 발생되는 이산화탄소를 분리할 수 있는 신 흡수제로써 활용 가능성을 파악하기 위하여, sulfonate계 이온성 액체인 1-(2-methoxyethyl)-3-methylimidazolium methanesulfonate 흡수제에 대하여 합성하고, 성상 분석 및 이산화탄소 흡수능을 측정하였다. 1단 방법을 이용하여 저렴하게 이온성 액체를 합성하였다. 합성된 시료의 열적, 화학적 안정성을 DSC 및 TGA를 사용하여 측정하였으며, 화학적 구조는 1H-NMR spectrum으로 확인하였다. 또한, 가변부피투시창 (Variable-volume view cell)이 장착된 고압용 상평형 장치를 사용하여 CO2 흡수능을 평가하였다. 실험 조건은 30, 50, 70 ℃ 온도에서 수행하였고, 압력 195 bar까지 측정하였다. 실험결과 압력이 증가하거나 온도가 감소할 때 CO2 흡수량이 증가하였으며, 30 ℃, 13 bar에서 27.6 CO2/IL(g/kg)의 CO2 흡수능을 보였다.
In this study, 1-(2-methoxyethyl)-3-methylimidazolium methanesulfonate ionic liquid has been synthesized, characterized and tested with respect to carbon dioxide absorption with the aim to use it as advanced absorbent materials in fossil fuel processing. The ionic liquid was synthesized by a one step method, low cost. The thermal and chemical stability of selected ionic liquid has been investigated by DSC, TGA and the structure was verified by 1HNMR spectroscopy. The solubility of carbon dioxide in the methanesulfonate-based ionic liquids were measured using a high-pressure equilibrium apparatus equipped with a variable-volume view cell at 30, 50 and 70 ℃ and pressure up to 195 bar. The results show that carbon dioxide solubilities of 1-(2-methoxyethyl)-3-methylimidazolium methanesulfonate increased with pressure increasing and temperature decreasing, and the carbon dioxide absorption capacity showed 27.6 CO2/IL(g/kg) at 30 ℃, 13 bar.
[References]
  1. Siriwardane RV, Shen MS, Fisher EP, Energy Fuels, 17(3), 571, 2003
  2. Shiflett MB, Drew DW, Cantini RA, Yokozeki A, Energy Fuels., 24, 5781, 2010
  3. Wappel D, Gronald G, Kalb R, Draxler J, Int. J. Greenhouse Gas Control., 4, 486, 2010
  4. Winkel A, Wilhelm R, Eur. J. Org. Chem., 5817, 2010
  5. Lee H, Lee JS, Ahn BS, Kim HS, J. Korean Ind. Eng. Chem., 16(5), 595, 2005
  6. Lee H, Lee JS, Kim HS, Appl. Chem. Eng., 21(2), 129, 2010
  7. Jang WJ, “A study of Absorbent for Pre-combustion CO2 Capture System,” Chung nam National University, 2009
  8. Zhang F, Fang CG, Wu YT, Wang YT, Li AM, Zhang ZB, Chem. Eng. J., 160(2), 691, 2010
  9. Fredlake CP, Crosthwaite JM, Hert DG, Aki SNVK, Brennecke JF, J. Chem. Eng. Data., 49, 954, 2004
  10. Zhang S, Chen Y, Ren RXF, Zhang Y, Zhang J, Zhang X, J. Chem. Eng. Data., 50, 230, 2005
  11. Cassol CC, Ebeling G, Ferrera B, Duponta J, Adv. Synth.Catal., 348, 243, 2006
  12. Wasserscheid P, Welton T (eds.), Ionic Liquids in Synthesis, Wiley-VCH, Weinheim, 2003
  13. Hee YS, “Synthesis of Chiral Imidazolium Ionic liquids,” Ewha Womans University, 2009
  14. Oh SK, “A Study on Absorption Characteristics of Carbon Dioxide Using Alkanolamine Solutions,” Chungnam National University, 2008
  15. Jeong SK, Kim DH, Baek IH, Lee SH, Korean Chem. Eng. Res., 46(3), 492, 2008
  16. Shin EK, Lee BC, J. Chem. Eng. Data., 53, 2728, 2008
  17. Lee BC, Outcalt SL, J. Chem. Eng. Data., 51, 892, 2006
  18. Ahn JY, Lee BC, Lim JS, Yoo KP, Kang JW, Fluid Phase Equilib., 290(1-2), 75, 2010
  19. Cho MH, Lee H, Kim H, Korean Chem. Eng. Res., 48(1), 1, 2010
  20. Anthony JL, Anderson JL, Maginn EJ, Brennecke JF, J. Phys. Chem. B, 109(13), 6366, 2005
  21. Aki SNVK, Mellein BR, Saurer EM, Brennecke JF, J. Phys. Chem. B, 108(52), 20355, 2004