Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.50, No.1, 25-29, 2012
열처리 온도에 따른 TiO2 나노튜브의 리튬이차전지 음전극 특성
Effect of Annealing Temperature on the Anode Properties of TiO2 Nanotubes for Rechargeable Lithium Batteries
루타일(rutile) TiO2 분말의 알칼리 수열합성과 300~500 ℃ 열처리를 통해 TiO2 나노튜브를 제조하고, 이를 리튬이 차전지의 음극 활물질로 채택하여 그 물성과 전기화학적 특성을 조사하였다. 수열반응 직후의 정제과정에서 불순물인 미세분진을 완전히 제거하여 제조된 TiO2 나노튜브는 고비표면적과 확연한 나노튜브 결정상을 보였다. 또한 열처리 온도가 증가함에 따라 등방적으로 분산된 나노튜브들이 서로 응집되어 비표면적의 감소를 초래하였다. 300 ℃ 열처리한 TiO2 나노튜브가 250 mAh g^(-1)의 가장 높은 초기 방전용량을 나타내었으며, 사이클과 고율 특성은 400 ℃ 열처리한 시료가 가장 우수한 성능을 보였다.
TiO2 nanotubes are prepared from rutile prticles via an alkaline hydrothermal synthesis and the consequent heat treatment at 300~500 ℃. The physical and electrochemical properties of the TiO2 nanotubes are characterized for use as a anode material of rechargeable lithium battery. In particular, the microscale dusts as an impurity component occurred in the purification step after the hydrothermal reaction are completely removed to yield TiO2 nanotube with a higher specific surface area and more obvious crystalline phases. As the annealing temperature increases, the specific surface area is slightly decreased due to some aggregation between the isotropically dispersed nanotubes. Highest initial discharge capacity of 250 mAh g^(-1) is achieved for the TiO2 nanotube annealed at 300 ℃, whereas the 400 ℃ TiO2 nanotube shows the superior cycle performance and high-rate capability.
[References]
  1. Bavykin DV, Friedrich JM, Walsh FC, Adv. Mater., 18(21), 2807, 2006
  2. Gao XP, Lan Y, Zhu HY, Liu JW, Ge YP, Wu F, Song DY, Electrochem. Solid State Lett., 8(1), A26, 2005
  3. Armstrong AR, Armstrong G, Canales J, Bruce PG, Angew. Chem. Int. Ed., 43(17), 2286, 2004
  4. Armstrong AR, Armstrong G, Canales J, Bruce PG, Chem. Commun.(19), 2454, 2005
  5. Choi MG, Lee YG, Song SW, Kim KM, Electrochim. Acta, 55(20), 5975, 2010
  6. Choi MG, Lee YG, Kim KM, Korean Chem. Eng. Res., 48(3), 283, 2010
  7. Li JR, Tang ZL, Zhang ZT, Electrochem. Solid State Lett., 8(6), A316, 2005
  8. Xu JW, Ha CH, Cao B, Zhang WF, Electrochim. Acta, 52(28), 8044, 2007
  9. Zhou YK, Cao L, Zhang FB, He BL, Li HL, J. Electrochem. Soc., 150(9), A1246, 2003
  10. Kim J, Cho J, J. Electrochem. Soc., 154(6), A542, 2007
  11. Zhang H, Li GR, An LP, Yan TY, Gao XP, Zhu HY, J. Phys. Chem. C., 111(16), 6143, 2007
  12. Wang Q, Wen ZH, Li JH, Inorg. Chem., 45(17), 6944, 2006
  13. Wang YF, Wu MY, Zhang WF, Electrochim. Acta, 53(27), 7863, 2008
  14. Nakahira A, Kato W, Tamai M, Isshiki T, Nishio K, Aritani H, J. Mater. Sci., 39(13), 4239, 2004
  15. Bavykin DV, Parmon VN, Lapkin AA, Walsh FC, J. Mater. Chem., 14(22), 3370, 2004
  16. Wagemaker M, van Well AA, Kearley GJ, Mulder FM, Solid State Ion., 175(1-4), 191, 2004
  17. Furukawa H, Hibino M, Honma I, J. Electrochem. Soc., 151(4), A527, 2004
  18. Gao XP, Zhu HY, Pan GL, Ye SH, Lan Y, Wu F, Song DY, J. Phys. Chem. B, 108(9), 2868, 2004
  19. Sudant G, Baudrin E, Larcher D, Tarascon JM, J. Mater. Chem., 15(15), 1263, 2005
  20. Guo YG, Hu YS, Maier J, Chem. Commun.(26), 2783, 2006
  21. Wang D, Choi D, Li J, Yang Z, Nie Z, Kou R, Hu D, Wang C, Saraf LV, Zhang J, Aksay IA, Liu J, ACS Nano., 3(4), 907, 2009