Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.49, No.5, 669-675, 2011
칼릭스아렌 포로젠을 이용한 다공성 박막의 초기 나노기공 형성과정에 관한 연구
A study on the Initial Nanopore Formation in the Calix Arene Based Porogen Templated Porous Thin Film
다공성 구조로 되어있는 차세대 저유전 박막(k<2.0)의 나노 기공의 초기 형성 과정을 이해하기 위하여 실세스퀴옥산(silsesquioxane; SSQ) 매트릭스에서 분산된 4-tert-butyl calix[4]arene-O,O',O",O"'-tetraacetic acid tetraethyl ester(CA[4]) 포로젠이 열분해에 의해서 나노 기공으로 전환되는 과정을 Fourier Transform Infrared Spectroscopy(FT-IR)와 in-situ Position Annihilation Lifetime Spectroscopy(PALS) 연구를 통해 분석하였다. SSQ/CA[4] 하이브리드 시스템은 열 경화에 따라 효과적인 기공 구조의 균일한 박막을 제공하였다. SSQ/CA[4] 10, 20% 두 종류의 하이브리드 박막을 in-situ PALS 분석을 시행한 결과, CA[4] 포로젠의 분해 거동이 달랐다. SSQ/CA[4] 10% 하이브리드 박막은 300 ℃ 이상부터 단분자 포로젠으로부터 기인한 메조포어(~1.5 nm)가 생성되기 시작하였으나, SSQ/CA[4] 20% 하이브리드 박막은 상대적으로 낮은 온도인 250 ℃부터 상태로 CA[4] 분자들이 자가 조립된 마이셀로부터 기인한 메조포어(2.5~3.0 nm)가 생성되었다. 이는 SSQ/CA[4] 20% 하이브리드 박막에서 생성된 기공의 구조가 매우 연결된 상태이기 때문에 초기에 포로젠이 분해되었을 때, 분해된 분자조각들이 쉽게 박막 외부로 빠져나올 수 있기 때문이라고 생각된다.
Fourier Transform Infrared Spectroscopy and in-situ Position Annihilation Lifetime Spectroscopy(PALS) analysis of hybrid film, which consist of silsesquioxane(SSQ) and 4-tert-butyl calix[4]arene-O,O',O",O'"-tetraacetic acid tetraethyl ester(CA[4]) have been investigated in order to understand initial formation of nanopore in the next generation porous low-k dielectrics(k < 2.0). SSQ/CA[4] can provide effective homogeneous thin film having porous structure. The porogen decomposition behavior were completely different in the two kinds of SSQ/CA[4] based hybrid film (i.e. SSQ/CA[4] 10 and SSQ/CA[4] 20%). Relatively small pores(1.5 nm) come from dispersion of uni-molecular CA[4] in the SSQ matrix have been generated at 300 ℃, while mesopores(2.5~3.0 nm) induced from self assembled CA[4] have been generated at 250 ℃. It might be due to highly interconnected structure of SSQ/CA[4] 20% hybrid thin film resulting in facile evacuating of decomposed fragment of CA[4] molecule.
[References]
  1. Corma A, Chem. Rev., 97(6), 2373, 1997
  2. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS, Nature., 359, 710, 1992
  3. Yanagisawa T, Shimizu T, Kuroda K, Kato C, Bull. Chem. Soc. Jpn., 63(4), 988, 1990
  4. Tamaki R, Chujo Y, J. Mater. Chem., 8(5), 1113, 1998
  5. Lee B, Park YH, Hwang YT, Oh W, Yoon J, Ree M, Nature Materials., 4, 147, 2005
  6. Kim HC, Wilds JB, Kreller CR, Volksen W, Brock PJ, Lee VY, Magbitang T, Hedrick JL, Hawker CJ, Miller RD, Adv. Mater., 14(22), 1637, 2002
  7. Kohl AT, Mimna R, Shick R, Rhodes L, Wang ZL, Kohl PA, Electrochem. Solid-State Lett., 2(2), 77, 1999
  8. de Theije FK, Balkenende AR, Verheijen MA, Baklanov MR, Mogilnikov KP, Furukawa Y, J. Phys. Chem. B, 107(18), 4280, 2003
  9. Yang S, Mirau PA, Pai C, Nalamasu O, Reichmanis E, Pai JC, Obeng YS, Seputro J, Lin EK, Lee H, Sun J, Gidley DW, Chem. Mater., 14(1), 369, 2002
  10. Lee B, Oh W, Hwang Y, Park YH, Yoon J, Jin KS, Heo K, Kim J, Kim KW, Ree M, Adv. Mater., 17(6), 696, 2005
  11. Lee B, Oh W, Yoon J, Hwang Y, Kim J, Landes BG, Quintana JP, Ree M, Macromolecules, 38(22), 8991, 2005
  12. Kim JS, Kim HC, Lee B, Ree M, Polymer, 46(18), 7394, 2005
  13. Yim JH, Jeong HD, Pu LS, Thin Solid Films, 476(1), 46, 2005
  14. Yim JH, Lyu YY, Jeong HD, Song SA, Hwang IS, Hyeon-Lee J, Mah SK, Chang S, Park JG, Hu YF, Sun JN, Gidley DV, Adv. Funct. Mater., 13(5), 382, 2003
  15. Yim JH, Seon JB, Jeong TD, Pu LYS, Baklanov MR, Gidley DW, Adv. Funct. Mater., 14(3), 277, 2004
  16. Yim JH, Kim J, Gidley DW, Vallery RS, Peng HG, An DK, Choi B, Park YK, Jeon JK, Macromol. Mater. Eng., 291, 369, 2006
  17. Gutsche CD, Dhawan B, No KH, Muthukrishnan R, J. Am. Chem. Soc., 103(13), 3782, 1981
  18. Cho YL, Rudkevich DM, Rebek J, J. Am. Chem. Soc., 122(40), 9868, 2000
  19. Alexandratos SD, Natesan S, Macromolecules, 34(2), 206, 2001
  20. Lee KH, Yim JH, “Porous Low-dielectric Constant Thin Film with Controlled Solvent Diffusion,” U.S. Patent No. 11, 263,867, 2006
  21. Baklanov MR, Mogilnikov KP, Polovinkin VG, Dultsev FN, J. Vac. Sci. Technol. B, 18(3), 1385, 2000
  22. Baklanov MR, Mogilnikov KP, Microelectron. Eng., 64, 335, 2002
  23. Maex K, Baklanov MR, Shamiryan D, Iacopi F, Brongersma S, Yanovitskaya ZS, J. Appl. Phys., 93(11), 8793, 2003
  24. Gidley DW, Peng HG, Vallery RS, Ann. Rev. Mat. Res., 36, 49, 2006
  25. Gidley DW, Frieze WE, Dull TL, Sun J, Yee AF, Nguyen CV, Yoon DY, Appl. Phys. Lett., 76(10), 1282, 2000
  26. Gidley DW, Frieze WE, Yee AF, Dull TL, Ho HM, Ryan ET, Phys. Rev. B, Rapid Comm., 60(8), R5157, 1999
  27. Dull TL, Frieze WE, Gidley DW, Sun JN, Yee AF, J. Phys. Chem. B, 105(20), 4657, 2001
  28. Liu WC, Yang CC, Chen WC, Dai BT, Tsai MS, J. Non-Cryst. Solids., 311, 233, 2002