Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.49, No.5, 657-663, 2011
피페리딘 구조유도분자를 이용한 알루미노포스페이트 제올라이트 합성: 피페리딘 구조유도분자가 결정구조 형성에 미치는 영향
Synthesis of Aluminophosphate using Structure Directing Agent containing Piperidine Moiety: Effect of SDA on Crystal Structure
피페리딘 구조가 포함된 구조유도분자가 미치는 알루미노포스페이트 제올라이트 합성과 결정구조에 대한 영향을 조사하였다. 피페리딘 구조가 포함된 구조 유도분자는 피페리딘을 포함하여 2-메틸피페리딘, 2,6-디메틸피페리딘, 2,2,6,6-테트라메틸피페리딘을 사용하였다. 제올라이트 합성은 1.0Al2O3:1.0P2O5:0.76SDA:45H2O의 조성으로 170 ℃에서 7일 동안 수열합성을 하였다. 피페리딘을 구조유도분자로 사용한 경우, 층상 구조가 형성되었으며 구조유도분자의 크기가 커질수록 AFI 구조의 AlPO-5가 형성되고 가장 큰 구조 유도분자를 이용한 경우, SAS 구조의 알루미노포스페이트가 형성됨을 리트벨트법으로 확인할 수 있었다. 또한 고체핵자기공명분석법의 결과로부터 미세 다공성 물질인 SAS 골격 구조 내에 알루미늄과 인이 위치함을 알 수 있었다.
Structure directing agent(SDA) containing piperidine moiety such as piperidine(PI), 2-methylpiperidine (MPI), 2,6-dimethylpiperidine(DMPI) and 2,2,6,6,-tetramethylpiperidine(TMPI), respectively has been utilized to synthesize aluminophosphate zeolite using hydrothermal method. The gel composition was 1.0Al2O3:1.0P2O5:0.76SDA:45H2O and the hydrothermal heating was performed in an oven at 443 K and for 7 days at static mode. The obtained zeolitic material contained a lamellar structure when PI was used as the SDA. With a progressive increase of the SDA size, various structures of aluminophosphate including AlPO-5 of AFI structure were obtained. The aluminophosphate of SAS structure was formed when the largest TMPI was utilized as the SDA, which was confirmed by the Rietveld refinement. The result of 27Al and 31P MAS NMR of the sample suggested that Al and P were incorporated into the framework of the aluminophosphate.
[References]
  1. Pastore HO, Coluccia S, Marchese L, Annu. Rev. Mater. Res., 35, 351, 2005
  2. Wilson ST, Lok BM, Messina CA, Cannan TR, Flanigen EM, J. Am. Chem. Soc., 104, 1146, 1982
  3. Davis ME, Nature., 417, 813, 2002
  4. El Haskouri J, Perez-Cabero M, Guillem C, Latorre J, Beltran A, Beltran D, Amoros P, J. Solid State Chem., 182, 2122, 2009
  5. Yu JH, Xu RR, Chem. Soc. Rev., 35, 593, 2006
  6. Yamamoto K, Ikeda T, Onodera M, Muramatsu A, Mizukami F, Wang YX, Gies H, Micropor. Mesopor. Mat., 128, 150, 2010
  7. Louer D, Boultif A, Z. Kristallogr., 225, 2006
  8. Altomare A, Caliandro R, Camalli M, Cuocci C, Giacovazzo C, Moliterni AGG, Rizzi R, J. Appl. Crystallogr., 37, 1025, 2004
  9. Larson AC, Von Dreele RB, “General Structure Analysis System (GSAS),” Los Alamos National Laboratory Report LAUR, 2000
  10. Toby BH, J. Appl. Crystallogr., 34, 210, 2001
  11. Wang J, Song J, Yin C, Ji Y, Zou Y, Xiao FS, Micropor. Mesopor. Mat., 117, 561, 2009
  12. Ito A, Maekawa H, Kawagoe H, Komura K, Kubota Y, Sugi Y, J. Chem. Soc. Jpn., 80, 215, 2007
  13. Shen W, Yang J, Li S, Hu W, Xu J, Zhang H, Zou Q, Chen L, Deng F, Micropor. Mesopor. Mat., 127, 73, 2010
  14. Shirley R, The crysfire 2002 system for automatic powder indexing: User’s manual, The Lattice Press, Surrey, 2002
  15. Le Bail A, Duroy H, Fourquet JL, Mater. Res. Bull., 23, 447, 1988
  16. Grosse-Kunstleve RW, McCusker LB, Baerlocher C, J. Appl. Crystallogr., 32, 536, 1999
  17. Patinec V, Wright PA, Lightfoot P, Aitken RA, Cox PA, J. Chem. Soc. Dalton., 3909, 1999
  18. Wragg DS, Morris R, Burton AW, Zones SI, Ong K, Lee G, Chem. Mater., 19, 3924, 2007
  19. Baerlocher C, Gramm F, Massuger L, McCusker LB, He Z, Hovmoller S, Zou X, Science., 315, 1113, 2007
  20. Baerlocher C, Xie D, McCusker LB, Hwang SJ, Chan IY, Ong K, Burton AW, Zones SI, Nat. Mater., 7, 631, 2008
  21. Favre-Nicolin V, Cerny R, J. Appl .Crystallogr., 35, 734, 2002