Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.49, No.5, 644-651, 2011
탄소나노튜브 기반의 고체수소저장시스템에 관한 전산해석
Numerical Simulation of CNTs Based Solid State Hydrogen Storage System
향후 도래할 수소경제에서 가장 유망한 기술 중에 하나인 고체수소저장 시스템들의 전체성능은 고체수소화물 내부의 열 및 물질전달 속도에 크게 영향을 받으며, 최적화된 시스템 설계를 위해서 이들에 대한 연구들이 선행되어야 한다. 본 연구에서는 Pt-CNTs 수소저장물질을 이용한 수소저장시스템에 대한 모델링 및 2차원 비정상상태 전산해석을 수행하였다. 기존 상용화된 CFD 소프트웨어를 이용하여 충전동안 발생하는 열 및 물질전달에 대한 현상들을 연구하였으며, 최적화된 수소저장시스템 설계는 고압에서 대류에 의한 냉각효과를 최대화하여 시스템 내부의 온도 상승과 충전시간 지연을 개선할 수 있음을 밝혀냈다. 아직까지 CNT 기반의 수소저장시스템에 대한 연구들이 보고되고 있지 않은 상황에서, 본 연구는 향후 CNT 기반의 고체수소저장시스템 최적 설계에 대한 방안들을 제시한다.
Storing hydrogen in solid state hydride is one of the best promising methods for the future hydrogen economy. The total performance of such systems depends on the rate at which the amount of mass and heat migration is supplied to solid hydride. Therefore, an accurate modeling of the heat and mass transfer is of prime importance in optimizing the design of such systems. In this work, Hydrogen storage in Pt-CNTs hydrogen reactor has been intensively investigated by solving 2 dimensional mathematical models. Using a CFD computer software, systematic studies have been performed to elucidate the effect of heat and mass transfer during hydrogen charging periods. It was revealed that the optimized design of hydrogen storage vessel can prevent the increase of system temperature and the charging time due to the convective cooling effects inside the vessels at even high charging pressure. Because none has reported the critical issues of heat and mass transfer for CNT based hydrogen storage system, this work can support the first insight of the optimal design for solid state hydrogen storage system based on CNT in the near future.
[References]
  1. Schlapbach L, Zuttel A, Nature., 414, 353, 2001
  2. Satyapal S, Petrovic J, Read C, Thomas G, Ordaz G, Catal. Today., 120, 24656, 2006
  3. Jemni A, Ben Nasrallah S, Lamloumi J, Int. J. Hydrogen Energy., 22, 67, 1997
  4. Jemni A, Ben Nasrallah S, International journal of Hydrogen Energy., 20, 43, 1995
  5. Dillon AC, Jones KM, Bekkedahl TA, Kiang CH, Bethune DS, Heben MJ, Nature, 386(6623), 377, 1997
  6. Zhcharia R, Rather SU, Hwang SW, Nahm KS, Chem. Phys. Lett., 434, 296, 2008
  7. Rather SU, Mehraj-ud-din N, Zacharia R, Hwang SW, Nahm KS, Int. J. Hydrogen Energy., 34, 961, 2009
  8. Bird RB, Stewart WE, Lightfoot EN, “Transport Phenomena," 2nd ed., John Wiley & Sons, Inc., 2005
  9. Lamari M, Aoufi A, Malbrunot P, AIChE J., 46(3), 632, 2000
  10. Hermosilla-Lara G, Momen G, Marty PH, Neindre BL, Hassouni K, Int. J. Hydrogen Energy., 32, 1542, 2007
  11. http://www.esi-cfd.com. for information on the commercial software package cfd-ace+.
  12. Yeo CH, Kim JT, Kim KW, Kim HS, Hwangbo CH, Nahm KS, Im YH, Proc. The Korea Society for Energy Engineering Conf., 111, 2009