Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.49, No.5, 588-593, 2011
Carberry Type 생물반응기에서 암모늄 이온 제거에 의한 돼지유행성설사병 바이러스 백신 생산성 증대
Improvement of Porcine Epidemic Diarrhea Disease Vaccine Productivity by Ammonium Ion Removal in a Carberry Type Bioreactor
미립담체에 고정된 Vero 세포를 이용한 돼지유행성설사병 바이러스 백신의 생산성을 향상시키기 위하여 Phillipsite-Gismondine synthetic zeolite가 투석막에 충진된 Carberry type 생물반응기를 사용하여 암모늄 이온을 선택적으로 흡착하였다. Impeller shaft 및 흡착제 사이에 응집된 미립담체 때문에 세포 성장이 감소하는 것으로 보이나, 포도당 소모량과 젖산 생성량의 비교를 통해 판단 할 때 zeolite는 세포에 독성을 나타내지 않았다. 배양배지로부터 암모늄 이온을 제거함으로써 세포성장 및 바이러스 생산 두 단계 모두가 크게 개선되었다. 바이러스 생산에 있어서는 암모늄 이온 제거에 의해 대조군과 비교하여 바이러스 역가가 2배 이상 향상되었다. 연구결과 zeolite는 암모늄 이온을 효과적으로 흡착제거하여 바이러스 백신의 생산성을 높일 수 있는 이상적인 흡착제임을 확인하였다.
The porcine epidemic diarrhea virus(PEDV) production yield in spinner flask cultures using Vero cells immobilized on microcarriers was improved by the selective adsorption of ammonium ions in a Carberry type bioreactor which was equipped with Phillipsite-Gismondine synthetic zeolite. Though the apparent cell growth seemed to be lower than that of control due to the aggregation of microcarriers between impeller shaft and the adsorbent, zeolite was found to not to be toxic to Vero cell, considering estimated glucose and lactate changes. Zeolite was observed to remove ammonium ions effectively in both steps of cell growth and virus production. In virus production, the virus titer with zeolite was two times higher than that without zeolite. Consequently, zeolite was found to be an ideal adsorbent for higher production of virus vaccine with the effective removal of ammonium ions.
[References]
  1. Eagle H, J. Biol. Chem., 214(2), 839, 1955
  2. Raivio KO, Seegmiller JE, Biochim. Biophys. Acta., 299, 283, 1973
  3. Dalili M, Sayles GD, Ollis DF, Biotechnol. Bioeng., 36(1), 74, 1990
  4. Zielke HR, Zielke CL, Ozand PT, Fed. Proc., 43(1), 121, 1984
  5. Jeong YH, Wang SS, Enzyme Microb. Technol., 17(1), 47, 1995
  6. Ryan WL, Cardin C, Proc. Soc. Exp. Biol. Med., 123, 27, 1966
  7. Visek WJ, Kolodny GM, Gross PR, J. Cell Physiol., 80(3), 373, 1972
  8. Butler M, Spier RE, J. Biotechnol., 1(3-4), 187, 1984
  9. Jeong YH, Wang SS, Biotechnol. Tech., 6(4), 341, 1992
  10. Reuveny S, Velez D, Macmillan JD, Miller L, J. Immunol. Methods., 86(1), 53, 1986
  11. Glacken MW, Fleischaker RJ, Sinskey AJ, Biotechnol. Bioeng., 28(9), 1376, 1986
  12. Ito M, Mc Limans WF, Cell Biol. Int. Rep., 5(7), 661, 1981
  13. Commoy-Chevalier MJ, Robert-Gailiot B, Chany C, J. Gen. Virol., 41(3), 541, 1978
  14. Jensen EM, Liu OC, Proc. Soc. Exp. Biol. Med., 107, 834, 1961
  15. Eaton MD, Scala AR, Virology., 13, 300, 1961
  16. Furusawa E, Cutting W, Proc. Soc. Exp. Biol. Med., 111, 71, 1962
  17. Griffiths JB, J. Cell Sci., 12(2), 617, 1973
  18. Hosoi S, Mioh H, Anzai C, Sato S, Fujiyoshi N, Cytotechnology., 1(2), 151, 1988
  19. Butler M, Christie A, Cytotechnology., 15(1-3), 87, 1994
  20. Genzel Y, Ritter JB, Konig S, Alt R, Reichl U, Biotechnol. Prog., 21(1), 58, 2005
  21. Hecht V, Bischoff L, Gerth K, Biotechnol. Bioeng., 35(10), 1042, 1990
  22. Chang YH, Grodzinsky AJ, Wang DI, Biotechnol. Bioeng., 47(3), 308, 1995
  23. DeBouck P, Pensaert M, Am. J. Vet. Res., 41(2), 219, 1980
  24. Dea S, Vaillancourt J, Elazhary Y, Martineau GP, Can. Vet. J., 26(3), 108, 1985
  25. Egberink HF, Ederveen J, Callebaut P, Horzinek MC, Am. J. Vet. Res., 49(8), 1320, 1988
  26. Hofmann M, Wyler R, J. Clin. Microbiol., 26(11), 22335, 1988
  27. Kweon CH, Kwon BJ, Jung TS, Kee YJ, Hur DH, Hwang EK, Rhee JC, An SH, Korean. J. Vet. Res., 33(2), 249, 1993
  28. Park BG, Min YW, Chun GT, Kim IH, Jeong YH, Korean J. Biotechnol. Bioeng., 13(4), 404, 1998
  29. Park BG, Rhee HI, Chun GT, Kim IH, Jeong YH, Korean J. Biotechnol. Bioeng., 13(4), 411, 1998