Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.49, No.5, 516-520, 2011
NaBH4 가수분해반응에서 수소 수율에 관한 연구
Study on the Hydrogen Yield of NaBH4 Hydrolysis Reaction
휴대용 고분자전해질 연료전지의 수소발생용으로써 NaBH4는 많은 장점을 갖고 있다. 본 연구에서는 NaBH4 가수분해 반응의 수소 수율에 대해 연구하였다. NaBH4 가수분해 반응의 수소 수율에 미치는 촉매 형태, 온도, NaBH4 농도, NaOH 농도 등의 영향에 대해 실험하였다. 촉매는 Co-P/Cu, Co-B/Cu 와 Co-P-B/Cu를 사용하였는데 이들 촉매 종류에 따라 NaBH4 가수분해 반응의 수소 수율에 미치는 영향은 거의 없었다. 60℃ 이하의 온도에서 NaBH4 농도가 증가하면 부산물과 NaBH4에 의해 겔이 형성되면서 가수분해 반응의 수소 수율이 감소였다. 겔 형성에 의해서 NaBH4 가수분해 반응 속도와 수소 총 발생량이 감소하였다. 안정화제인 NaOH를 첨가하면 겔 형성을 촉진해 수소 수율을 감소시켰다.
Sodium borohydride, NaBH4, shows a number of advantages as hydrogen source for portable proton exchange membrane fuel cells (PEMFCs). The hydrogen yield of sodium borohydride hydrolysis reaction was studied. The effect of temperature, NaBH4 concentration, NaOH concentration and catalyst type on the hydrogen yield from NaBH4 hydrolysis reaction were measured. The catalysts of Co-P/Cu, Co-B/Cu and Co-P-B/Cu were used in this study and there was no different effect of these catalysts on the hydrogen yield from NaBH4. Under the temperature of 60 ℃, the hydrogen yield decreased as NaBH4 concentration increased due to formation of gel with by-products and reactants. The gel formed during NaBH4 hydrolysis reaction diminished the hydrogen evolution rate and total volume of hydrogen. Addition of NaOH stabilizer enhanced the formation of gel and then decreased the hydrogen yield.
[References]
  1. Liu BH, Li ZP, J. Power Sources, 187(2), 527, 2009
  2. Freedom CAR and Fuel Technical Partnership: Technical goals, http://www.eere.energy.gov/vehiclesandfuels/about/partnerships/freedomcar/index.shtml.
  3. Gilson P, Monteleone G, Prosini PP, Int. J. Hydrogen Energy., 34, 929, 2009
  4. Sim W, Jo J, Choi D, Nam S, Park K, Korean Chem. Eng. Res., 48(3), 322, 2010
  5. Eom K, Cho K, Kwon H, J. Power Sources, 180(1), 484, 2008
  6. Jeong SU, Cho EA, Nam SW, Oh IH, Jung UH, Kim SH, Inter. J. of Hydrogen Energy., 32, 1749, 2007
  7. Lee J, Kong KY, Jung CR, Cho E, Yoon SP, Han J, Lee TG, Nam SW, Catal. Today, 120(3-4), 305, 2007
  8. Xu D, Dai P, Guo Q, Yue X, Int. J. Hydrogen Energy., 33, 7371, 2008
  9. Krishnan P, Yang TH, Lee WY, Kim CS, J. Power Sources, 143(1-2), 17, 2005
  10. Amendola SC, Sharp-Goldman SL, Janjua MS, Spencer NC, Kelly MT, Petillo PJ, Int. J. Hydrogen Energy., 25(10), 969, 2000
  11. Jeong SU, Kim RK, Cho EA, Kim HJ, Nam SW, Oh IH, Hong SA, Kim SH, J. Power Sources, 144(1), 129, 2005