Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.49, No.4, 485-490, 2011
워터젯 글라이딩 아크 플라즈마를 이용한 사불화탄소 저감
Reduction of Tetrafluoromethane using a Waterjet Gliding Arc Plasma
사불화탄소(CF4)는 반도체 제조공정에서 에칭과 반응기 세척에서 사용되어온 가스이다. CF4는 적외선을 강하게 흡수하고 대기 중 잔류시간이 길어서 지구온난화에 영향을 미치기 때문에 고효율의 분해가 필요하다. 본 연구에서는 플라즈마와 워터젯을 결합하여 워터젯 글라이딩 아크 플라즈마 시스템을 개발하고, 이를 이용하여 CF4를 고효율로 분해 할 수 있도록 방전영역을 증가시키고 다량의 OH 라디칼을 생성시킬 수 있는 최적의 조업 조건을 결정하였다. 공정 실험 변수로는 워터젯 주입량, CF4 초기 농도, 전체 가스량과 주입에너지량(SEI : Specific energy input)을 선정하였다. 변수실험을 통하여 워터젯 주입량이 25.5 mL/min, CF4 초기 농도 2.2%, 전체 가스량 9.2 L/min, SEI 7.2 kJ/L일 때 CF4 분해율은 최고 97%까지 도달하였다.
Tetrafluoromethane(CF4) has been used as etching and chamber cleaning gases for semiconductor manufacturing processes. These gases need to be removed efficiently because of their strong absorption of infrared radiation and long atmospheric lifetime which causes the global warming effect. We have developed a waterjet gliding arc plasma system in which plasma is combined with waterjet and investigated optimum operating conditions for efficient CF4 destruction through enlarging discharge region and producing large amount of OH radicals. The operating conditions are waterjet flow rate, initial CF4 concentration, total gas flow rate, specific energy input. Through the parametric studies, the highest CF4 destruction of 97% was achieved at 2.2% CF4, 7.2 kJ/L SEI, 9 L/min total gas flow rate and 25.5 mL/ min waterjet flow rate.
[References]
  1. Chang MB, Lee HM, Catal. Today, 89(1-2), 109, 2004
  2. Xie HD, Sun B, Zhu XM, J. Hazard. Mater., 168(2-3), 765, 2009
  3. Shebeko YN, Azatyan VV, Bolodian IA, Navzenya VY, Kopyov SN, Shebeko DY, Zamishevski ED, Combust. Flame, 121(3), 542, 2000
  4. Narengerile, Saito H, Watanabe T, Thin Solid Films., 518, 929, 2009
  5. Kim DY, Park DW, Surf. Coat. Technol., 202, 5280, 2008
  6. Yu SJ, Chang MB, Plasma Chem. Plasma Process., 21(3), 311, 2001
  7. Kuznetsova NYKIV, Gutsol AF, Fridman AA, Kennedy LA, J. Appl. Phys., 92, 4231, 2002
  8. Shmelev VM, Margolin AD, High Temp., 41(6), 735, 2003
  9. Watanabe T, Tsuru T, Thin Solid Films., 516, 4391, 2008
  10. Kuroki T, Tanaka S, Okubo M, Yamamoto T, IEEE., 4, 2900, 2005
  11. Hong YC, Kim HS, Uhm HS, Thin Solid Films, 435(1-2), 329, 2003
  12. Sun JW, Park DW, Korean J. Chem. Eng., 20(3), 476, 2003
  13. Du CM, Yan JH, Cheron B, Plasma Source Sci. Technol., 16, 791, 2007
  14. Du CM, Yan JH, IEEE Trans.Plasma Sci., 35, 1648, 2007
  15. Su ZZ, Ito K, Takashim K, Katsura S, Onda K, Mizuno A, J. Phys. D: Appl. Phys., 35, 3192, 2002