Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.49, No.4, 475-479, 2011
키토산/폴리감마글루탐산 나노입자의 제조 및 중금속 제거에의 응용
Preparation of Chitosan/Poly-γ-glutamic Acid Nanoparticles and Their Application to Removal of Heavy Metals
키토산은 천연고분자 물질로 다양한 물리화학적(다중양이온, 반응성 수산화기와 아미노기 그룹), 생물학적(생리활성, 생체적합성, 생분해성) 특성을 가지고 있다. 본 연구에서는 겔형성제로 폴리감마글루탐산을 이용하여 키토산 나노입자를 제조하였다. 나노입자는 폴리감마글루탐산의 카르복실기(-COO^(-))와 키토산의 아미노기(-NH3+)사이의 이온 상호작 용에 의해 형성되었다. 키토산(0.1~1 g)을 100 ml 아세트산 용액(1% v/v)에 첨가한 후 상온에서 충분히 용해되도록 하룻밤 동안 교반하였다. 폴리감마글루탐산(0.1 g)은 상온에서 90 ml 증류수에 용해시켰다. 교반되고 있는 폴리감마글루탐산 용액에 키토산 용액을 주사바늘을 통해 상온에서 적가하였다. 입자의 평균 크기는 80~300 nm 범위에서 형성되었다. 키토산/폴리감마글루탐산 나노입자는 중금속 이온들(Cd2+, Pb2+, Zn2+, Cu2+, Ni2+)의 제거를 위해 콜로이드 상태의 흡착 물질로 사용되었다. 나노입자의 중금속 제거 능력은 Cu2+ > Pb2+ > Cd2+ > Ni2+ > Zn2+의 결과를 보였다.
Chitosan is a natural polymer that has many physicochemical(polycationic, reactive OH and NH2 groups) and biological(bioactive, biocompatible, and biodegradable) properties. In this study, chitosan nanoparticles were prepared using poly-γ-glutamic acid(γ-PGA) as gelling agent. Nanoparticles were formed by ionic interaction between carboxylic groups in γ-PGA and amino groups in chitosan. Chitosan(0.1~1 g) was dissolved in 100 ml of acetic acid (1% v/v) at room temperature and stirred overnight to ensure a complete solubility. An amount of 0.1 g of γ-PGA was dissolved in 90 ml of distilled water at room temperature. Chitosan solution was dropped through needle into beaker containing γ-PGA solution under gentle stirring at room temperature. The average particle sizes were in the range of 80~300 nm. The prepared chitosan/γ-PGA nanoparticles were used to examine their removal of several heavy metal ions(Cd2+, Pb2+, Zn2+, Cu2+ and Ni2+) as adsorbents in aqueous solution. The heavy metal removal capacity of the nanoparticles was in the order of Cu2+ > Pb2+ > Cd2+ > Ni2+ > Zn2+.
[References]
  1. Rinaudo M, Prog. Polym. Sci., 31, 603, 2006
  2. Ieva E, Trapani A, Cioffi N, Ditaranto N, Monopoli A, Sabbatini L, Anal. Bioanal. Chem., 9, 207, 2009
  3. Kataoka T, Yoshida H, Chem. Eng. J., 8, 107, 1988
  4. Akkaya G, Uzun I, Guzel F, Desalination., 9, 1115, 2009
  5. Guibal E, Saucedo I, Jansson-Charrier M, Delanghe B, Le Cloirec P, Water Sci. Technol., 9, 183, 1994
  6. Leusch A, Holan Z, Volesky B, J. Chem. Technol. Biotechnol., 10, 279, 1995
  7. Poo H, Park C, Kwak MS, Choi DY, Hong SP, Lee IH, Lim YT, Choi YK, Bae SR, Uyama H, Kim CJ, Sung MH, Chemistry Biodiversity., 7, 1555, 2010
  8. Ivanovics G, Erdos L, Z. Immunitatsforsch., 90, 5, 1937
  9. Sawamura S, J. Coll. Agric. Tokyo., 5, 189, 1913
  10. Shih IL, Van YT, Bioresour. Technol., 79(3), 207, 2001
  11. Sung MH, Park C, Kim CJ, Poo H, Soda K, Ashiuchi M, Chemical Record., 5, 352, 2005
  12. Grenha A, Seijo B, Serra C, Remunan-Lopez C, Biomacromolecules, 8(7), 2072, 2007
  13. Kawashima Y, Adv. Drug Deliv. Rev., 47, 1, 2001
  14. Mao HQ, Roy K, Troung-Le VL, Janes KA, Lin KY, Wang Y, August JT, Leong KW, J. Control. Rel., 70, 399, 2001
  15. Qi L, Xu Z, Colloid Surf. A: Physicochem. Eng. Aspects., 251, 183, 2004
  16. Chang YC, Chen DH, J. Colloid Interface Sci., 283(2), 446, 2005
  17. Seo WS, Kim TT, Sung JS, Song KC, Korean Chem. Eng. Res., 42(1), 78, 2004
  18. Kim BS, Song JY, in: Hou CT, Shaw JF (Ed.), Biocatalysis and Agricultural Biotechnology, CRC Press, 399, 2009
  19. Kang MK, Kim JC, Polym.(Korea), 34(1), 79, 2010
  20. Brady JM, Tobin JM, Enzyme Microb. Technol., 17(9), 791, 1995
  21. Bhattacharyya KG, Gupta SS, Colloid Surf. A: Physicochem. Eng. Aspects., 277, 191, 2006
  22. Singh SP, Ma LQ, Hendry MJ, J. Hazard. Mater., 36, 654, 2006
  23. Srinivasa RP, Vijaya Y, Boddu VM, Krishnaiah A, Biores. Technol., 100, 194, 2009