Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.49, No.4, 470-474, 2011
바이오에탄올 생산을 위한 암모니아수에 의해 전처리된 볏짚의 효소당화 특성
Enzymatic Hydrolysis Characteristics of Pretreated Rice Straw By Aqueous Ammonia for Bioethanol Production
볏짚은 한국에서 매년 대량 생산되는 주요 작물이다. 침지공정을 이용한 목질계 바이오매스의 전처리는 대기압과 60 ℃의 온도에서 온화한 조건에서 수행되었다. 본 연구에서는 전처리된 바이오매스의 효소당화 조건을 찾아보았다. 볏짚의 경우에 이전의 목질계 바이오매스와 비교하여 당화시간이 다른 것들보다 짧은 것으로 나타났다. SAA(Soaking in Aqueous Ammonia) 전처리 볏짚의 당화는 40~48시간 사이에 종료가 되었고 50 ℃에서 높은 글루코스 전환율을 나타냈다. 글루코스 전환율은 효소사용량이 각각 65 FPU/ml과 32 CbU/ml일 때 높았다. 기질 농도가 5%(w/v)일 때 전환율은 72시간 동안 당화 후에 83.8%로 나타났다. SAA 전처리 볏짚의 동시당화발효(SSF; Simultaneous Saccharification and Fermentation) 실험에서는 40 ℃에서 높은 에탄올 생산수율을 보였다. 그때의 수율은 48시간에서 33.05%로 나타났다.
Rice straw is the main grain straw and is produced in large quantities every year in Korea. Pretreatment of lignocellulosic biomass using soaking process was carried out mild conditions at atmospheric pressure and temperature of 60 ℃. We found enzymatic hydrolysis condition of pretreated biomass. In case of a rice straw, compared with previous lignocellulosic biomass, we found that hydrolysis time was a shorter than others. Hydrolysis of SAA-treated rice straw has shown conversion rate was higher at 50 ℃. Hydrolysis was ended between 40~48 hour. Glucose conversion rate was higher when enzyme loading is 65 FPU/ml and 32 CbU/ml. When substrate concentration was 5%(w/v), it was that conversion rate was 83.8% after hydrolysis for 72 hr. In simultaneous saccharification and fermentation(SSF) experiment about SAA-treated rice straw, ethanol productive yield was highest from 40 ℃. The yield of that time was 33.05% from 48 hour.
[References]
  1. United Nations Development Programme. World energyassessment. United Nations Development Programme. New York, 2000
  2. Kim S, Dale BE, Biomass Bioenerg., 26(4), 361, 2004
  3. Hsu T, Guo G, Bioresource Technology., 101, 4907, 2010
  4. Kim KH, Tucker M, Nguyen Q, Bioresource Technology., 96, 1249, 2005
  5. Sherrard EC, Kressman FW, Eng. Chem., 37, 5, 1945
  6. Lynd LR, Wyman CE, Gerngross TU, Biotechnol. Prog., 15(5), 777, 1999
  7. Rani KS, Swamy MV, Seenayya G, Process Biochem., 33(4), 435, 1998
  8. Bellamy WD, Biotechnol. Bioeng., 26, 869, 1974
  9. Kim SB, Lee YY, Bioresour. Technol., 83(2), 165, 2002
  10. Kalman G, Varga E, Reczey K, Chem. Biochem., 16(4), 151, 2002
  11. Kim TH, Kim JS, Sunwoo C, Lee YY, Bioresour. Technol., 90(1), 39, 2003
  12. Kim TH, Taylor F, Hicks KB, Bioresource Technology., 99, 5694, 2008
  13. Kim TH, Lee YY, Appl. Biochem. Biotechnol., 121, 1119, 2005
  14. Kim TH, Lee YY, Bioresour. Technol., 97(2), 224, 2006
  15. Kim TH, Lee YY, Appl.Biochem. Biotechnol., 136, 81, 2007
  16. National Renewable Energy Laboratory, Standard Biomass Analytical Procedures. http://www.nrel.gov/biomass/analytical_procedures. html.