Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.49, No.4, 423-431, 2011
Aspen DynamicsTM와 ACM을 이용한 용융탄산염 연료전지 시스템의 모사 및 제어
Simulation and Control of the Molten Carbonate System using Aspen DynamicsTM and ACM
최근 대체에너지에 대한 관심이 높아짐에 따라 수소에너지를 기반으로 하는 차세대 발전 장치인 연료전지 관련 기술 개발이 활발하게 이루어지고 있다. 특히, 고온 연료전지의 대표적인 형태인 용융 탄산염 연료전지(MCFC: Molten Carbonate Fuel Cell, 이하 MCFC)는 전력사업용으로의 높은 가능성을 인정받아 화석연료를 대체할 발전방식으로 평가 받고 있다. 본 연구에서는 Aspen Custom Modeler(ACMTM)에서 평형반응식을 이용하여 스택 모델을 구성한 후, Aspen PlusTM에서 BOP(Balance of Plant) 시스템과 스택을 연결하여 전체 MCFC 발전 시스템의 정상상태를 모사하였다. 모델의 유효성을 입증하기 위해서 전류밀도, 연료이용률, S/C ratio, 재순환 흐름 비와 같은 주요 조업변수에 따른 셀 전압, 전력, 효율 등 시스템의 성능을 분석하였다. 그리고 Aspen DynamicsTM에서 PID제어 방식을 적용하여 제어 루프를 구성하였고 부하변화, 설정점 변화, 재순환 흐름비 변화에 따른 각각의 사례연구를 통하여 전체 시스템의 성능 변화를 예측하였다. 그 결과 연료이용률과 전류밀도의 변화에 따른 전체 시스템의 최대 발전 효율 및 출력전압을 위한 운전조건을 제안하였다.
Recentincreasing awareness of the environmental damage caused by the CO2 emission of fossil fuelsstimulated the interest in alternative and renewable sources of energy. Fuel cell is a representative example of hydrogen energy utilization. In this study, Molten Carbonate Fuel Cell system is simulated by using AspenTM. Stack model is consisted of equilibrium reaction equations using ACMTM(Aspen Custom Modeler). Balance of process of fuel cell system is developed in Aspen PlusTM and simulated at steady-state. Analysis of performance of the system is carried out by using sensitivity analysis tool with main operating parameters such as current density, S/C ratio, and fuel utilization and recycle ratio.In Aspen DynamicsTM, dynamics of MCFC system is simulated with PID control loops. From the simulation, we proposed operation range which generated maximum power and efficiency in MCFC power plant.
[References]
  1. Kirubakaran A, Jain S, Nema RK, Renew. Sust. Energ. Rev., 13, 2430, 2009
  2. Lim HC, J. Power Sources., 283, 16, 2000
  3. Lim HC, Koh JH, Trans. the Korean Hydrogen & New Energy Society., 10(2), 107, 1999
  4. Wolf TL, Wilemski G, J. Electrochem. Soc., 130, 48, 1983
  5. Sampath V, Sammells AF, Selman JR, J. Electrochem. Soc., 127, 79, 1983
  6. Lukas MD, Lee KY, Ghezel-Ayagh H, IEEE Trans. Energy Conversion., 14(4), 1651, 1999
  7. He W, J. Power Sources., 52, 179, 1994
  8. Yoshiba F, Abe T, Watanabe T, J. Power Sources, 87(1-2), 21, 2000
  9. Lukas MD, Lee KY, Ghezel-Ayagh H, IEEE Trans. Energy Conversion., 16(3), 289, 2001
  10. Lukas MD, Lee KY, Ghezel-Ayagh H, Control Engineering Practice., 10(2), 197, 2002
  11. Zhang W, Croiset E, Douglas PL, Fowler MW, Entchev E, Energy Conv. Manag., 46(2), 181, 2005
  12. Kuto D, Yamamoto O, Iwahara H, Yun CJ, Fuel cell., Gyeomjisa, 2007
  13. Kim DH, Lee TJ, Korean J. Chem. Eng., 29(4), 396, 1991