Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.49, No.4, 387-392, 2011
나노바이오촉매 기반 효소결합면역흡착검사
Nanobiocatalyst-Linked Immunosorbent Assay(NBC-LISA)
생촉매인 효소의 기질선택성은 다양한 분야에서 유용하게 이용되고 있다. 그 중에서도 효소결합면역흡착검사(enzymelinked immunosorbent assay, ELISA)는 항원항체의 결합을 항체와 공유결합된 효소의 반응으로 나타냄으로써 다양한 항원들의 진단을 가능케 했다. 하지만 기존의 효소결합면역흡착검사는 하나의 항체당 하나의 효소가 결합된 형태이기 때문에 감도(sensitivity)의 증가 폭에 그 한계가 있으며, 이를 극복하기 위한 방안으로 하나의 항체당 결합된 효소의 수를 증가시킴으로써 혁신적인 감도의 향상을 가져오는 연구가 진행되었다. 최근 나노바이오촉매(nanobiocatalyst, NBC) 접근방식을 이용한 효소활성의 안정화는 효소결합면역흡착검사의 감도 향상뿐만 아니라 그 성능의 안정성을 확보할 수 있는 연구결과로 이어지고 있다. 본 총설에서는 일반적인 효소결합면역흡착검사의 기본적인 원리와 감도향상을 위한 연구, 그리고 성능안정성(performance stability)을 향상시키기 위한 나노바이오촉매-결합면역흡착검사 (Nanobiocatalyst-Linked Immunosorbent Assay, NBC-LISA)에 대하여 살펴보고자 한다.
Enzymes are being used in various fields due to their unique property of substrate specificity. Enzymelinked immunosorbent assay(ELISA) has enabled the detection of various antigens by reporting the binding event of antigen and antibody via enzyme-catalyzed reaction. However, the sensitivity improvement of conventional ELISA has been limited because only one enzyme molecule is conjugated to one molecule of antibody. To overcome this limitation and further improve the sensitivity of ELISA, there have been efforts to increase the number ratio of enzymes to antibody. Recently, the nanobiocatalytic approaches, with their successful enzyme stabilization, improved the performance stability as well as sensitivity in a modified protocol of ELISA. The present paper introduces the basic principle of ELISA, and the recent efforts to improve sensitivity and performance stability of ELISA by using the nanobiocatalytic approaches.
[References]
  1. Koeller KM, Wong CH, Nature., 409(6817), 232, 2001
  2. Duran N, Esposito E, Appl. Catal. B: Environ., 28(2), 83, 2000
  3. Lee D, Lee J, Kim J, Kim J, Na HB, Kim B, Shin CH, Kwak JH, Dohnalkova A, Grate JW, Hyeon T, Kim HS, Adv. Mater., 17(23), 2828, 2005
  4. Wang J, Liu GD, Jan MR, J. Am. Chem. Soc., 126(10), 3010, 2004
  5. Piao Y, Lee D, Lee J, Hyeon T, Kim J, Kim HS, Biosens. Bioelectron., 25(4), 906, 2009
  6. Piao Y, Lee D, Kim J, Hyeon T, Kim HS, Analyst., 134(5), 926, 2009
  7. Yalow RS, Berson SA, Nature., 184(4699), 1648, 1959
  8. Engvall E, Perlmann P, Immunochemistry., 8(9), 871, 1971
  9. Vanweeme B, Schuurs AHW, Febs Lett., 15(3), 232, 1971
  10. Haas H, Hotz G, J. Virol. Methods., 2(1-2), 63, 1980
  11. Strategic Analysis of the Global In Vitro Diagnostics Market,Frost & Sullivan, 2010
  12. Munge B, Liu GD, Collins G, Wang J, Anal. Chem., 77(14), 4662, 2005
  13. Yu X, Munge B, Patel V, Jensen G, Bhirde A, Gong JD, Kim SN, Gillespie J, Gutkind JS, Papadimitrakopoulos F, Rusling JF, J. Am. Chem. Soc., 128(34), 11199, 2006
  14. Malhotra R, Patel V, Vaque JP, Gutkind JS, Rusling JF, Anal. Chem., 82(8), 3118, 2010
  15. Monroe D, J. Liposome Res., 1(3), 339, 1989
  16. Hwang S, Kumada Y, Seong G, Choo J, Katoh S, Lee E, Anal. Bioanal. Chem., 389(7), 2251, 2007
  17. Lee J, Kim J, Jia HF, Kim MI, Kwak JH, Jin SM, Dohnalkova A, Park HG, Chang HN, Wang P, Grate JW, Hyeon T, Small., 1(7), 744, 2005
  18. Il Kim M, Kim J, Lee J, Jia H, Bin Na H, Youn JK, Kwak JH, Dohnalkova A, Grate JW, Wang P, Hyeon T, Park HG, Change HN, Biotechnol. Bioeng., 96(2), 210, 2007
  19. Lee J, Bin NH, Kim BC, Lee JH, Lee B, Kwak JH, Hwang Y, Park JG, Gu MB, Kim J, Joo J, Shin CH, Grate JW, Hyeon T, J. Mater.Chem., 19(42), 7864, 2009
  20. Kim BC, Nair S, Kim J, Kwak JH, Grate JW, Kim SH, Gu MB, Nanotechnology., 16(7), S382, 2005
  21. Kim BC, Lopez-Ferrer D, Lee SM, Ahn HK, Nair S, Kim SH, Kim BS, Petritis K, Camp DG, Grate JW, Smith RD, Koo YM, Gu MB, Kim J, Proteomics., 9(7), 1893, 2009
  22. Kim BC, Zhao X, Ahn HK, Kim JH, Lee HJ, Kim KW, Nair S, Hsiao E, Jia H, Oh MK, Sang BI, Kim BS, Kim SH, Kwon Y, Ha S, Gu MB, Wang P, Kim J, Biosens. Bioelectron., 26(5), 1980, 2011
  23. Kim J, Jia HF, Wang P, Biotechnol. Advances., 24(3), 296, 2006
  24. Kim J, Grate JW, Nano Lett., 3(9), 1219, 2003