Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.49, No.1, 10-14, 2011
EDLC 전극용 메조기공 활성탄소 섬유의 전기화학적 특성
The Electrochemical Characteristics of Mesopore Active Carbon Fiber for EDLC Electrode
철 이온 교환방법에 의해 메조기공을 갖는 활성탄소 섬유(ACF)를 제조하고, 이를 사용하여 전기 이중층 커패시터(EDLC)의 전극소재 성능을 조사하였다. 질산처리에 의해 제조된 메조기공 ACF는 비표면적이 1,249, 664 m2/g이고, 메조 기공 분율이 70.6~81.3%이고, 평균 기공크기는 약 2.78~4.14 nm이다. 질산처리시간이 짧을수록 비표면적이 크고 메조 기공이 적게 발달됨을 알 수 있었다. 전기이중층 커패시터의 성능을 조사하기 위해서, 메조기공 ACF, 도전제, 바인더를 사용하여 단위 셀을 제조하였으며, 유기 전해질을 사용하였다. 2시간 질산으로 처리된 ACF의 비 축전양은 0.47 F/cm2이고, 20회 충·방전 테스트에서 안정된 실험결과를 얻을 수 있었다. EDLC의 전기화학적 성능은 ACF 전극의 비표면적에 크게 영향을 받으며 메조기공은 전하의 확산저항을 감소시키는 것을 알 수 있었다.
The electrode material performances of electric double layer capacitor(EDLC) were investigated using mesopous active carbon fiber(ACF), which was prepared by the iron exchange method. The mesoporous ACF had pore characteristics of specific surface area around 1249, 664 m2/g, mesoporous fraction around 70.6~81.3% and meanpore size around 2.78~4.14 nm. The results showed that as HNO3 treatment time decreased, the specific surface area increased and mesoporous fraction decreased. To investigate electrochemical performance of EDLC, unit cell was manufactured using mesoporus ACF, conducting material and binder; organic elctrolyte was used on this experiment. The specific capacitance of ACF treated with HNO3 for 2 hours turned out to be 0.47 F/cm2 and the results of the cyclic charge-discharge tests were stable. Thus, the electrochemical performance of EDLC was mainly dependent on specific surface area of ACF electrode and the diffusion resistance of charge decreased as the mesopore increased.
[References]
  1. Osaka T, Datta M, Energy storage systems for electronics, Gorden and Breach Science Publishers, 2000
  2. Prabaharan SRS, Vimala R, Zainal Z, J. Power Sources, 161(1), 730, 2006
  3. Mitani S, Lee SI, Saito K, Korai Y, Mochida I, Electrochim. Acta, 51(25), 5487, 2006
  4. Fang B, Wei YZ, Kumagai M, J. Power Sources, 155(2), 487, 2006
  5. Gryglewicz G, Machnikowski J, Lorenc-Grabowska E, Lota G, Frackowiak E, Electrochim. Acta, 50(5), 1197, 2005
  6. Barbieri O, Hahn M, Herzog A, Kotz R, Carbon, 43, 1303, 2005
  7. Alonso A, Ruiz V, Blanco C, Santamaria R, Granda M, Menendez R, de Jager SGE, Carbon, 44, 441, 2006
  8. Ozaki J, Endo N, Ohizumi W, Igarashi K, Nakahara M, Oya A, Carbon, 35, 1031, 1997
  9. Kang CY, Kang MG, Lee JD, J. korean oil chem. Soc., 26, 328, 2009
  10. Sutherland I, Sheng E, Bradley RH, Freakley PK, J. Mater. Sci., 31(21), 5651, 1996
  11. Sing KSW, Pure and Appl. Chem., 54, 2201, 1982
  12. Tamon H, Ishizaka H, Araki T, Okazaki M, Carbon, 36, 1257, 1998
  13. Li L, Song H, Chen X, Microporous Mesoporous Mater., 94, 9, 2006
  14. Li LX, Song HH, Chen XH, Electrochim. Acta, 51(26), 5715, 2006
  15. Tomita A, Yuhki Y, Higashiyama K, Takarada T, Tamai Y, Nenryo Kyokaishi(J. Fuel Soc. Jpn.), 64, 402, 1985
  16. Li H, Xi H, Zhu S, Wen Z, Wang R, Microporous Mesoporous Mater., 96, 357, 2006
  17. Karadikar P, Patil KR, Mitra A, Kakade B, Chandwadkar AJ, Microporous Mesoporous Mater., 98, 189, 2007