Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.48, No.6, 784-790, 2010
고정층 흡착탑에서 석탄비산재로부터 합성한 Zeolite의 VOCs 흡착 해석
Adsorption Analysis of VOCs of Zeolite Synthesized by Coal Fly Ash in a Fixed-bed Adsorber
고정층 반응기에서 비산재로부터 합성한 제올라이트와 4종류의 활성탄을 사용하여 질소 기류에서 아세톤, 벤젠, 톨루엔, 에틸벤젠 증기의 파과곡선을 측정하였다. 흡착실험은 101.3 kPa, 40 ℃에서 혼합 가스의 유량 70 cm3/min, 흡착제의 공급량 5 g, 그리고 VOCs 증기의 농도는 포화조의 온도를 30 ℃로 하여 행하였다. 실험으로부터 얻은 파과곡선의 비선형해석으로부터 VOCs의 흡착과 흡착제의 비활성화를 동시에 고려한 비활성모델의 흡착속도상수와 비활성속도상수를 구하여 문헌의 다른 흡착등온모델과 비교하였다. 검토한 모델 중 비활성모델이 실험결과와 가장 일치하였고 다음으로 Freundlich, DRK 모델 순으로 높은 상관관계를 나타내었다. 또한 파과곡선으로부터 구한 흡착제의 흡착용량은 VOC의 끓는점이 증가할수록 감소하였으며, 증기압이 증가할수록 증가하였다.
VOCs such as acetone, benzene, toluene, ethylbenzene were adsorbed in a fixed-bed adsorber using zeolite synthesized from coal fly ash and 4 kinds of activated carbon at 101.3 kPa. The adsorber was operated batchwise with the charge of 5 g adsorbent to obtain the breakthrough curve of VOCs. Experiments were carried out at 40 ℃, nitrogen flow rate of 70 cm3/min and sparger temperature of 30 ℃. The deactivation model was tested for these curves by combining the adsorption of VOCs and the deactivation of adsorbent particles. The observed values of the adsorption rate constant and the deactivation rate constant were evaluated through analysis of the experimental breakthrough data using a nonlinear least square technique. The experimental breakthrough data were fitted very well to the deactivation model than the adsorption isotherm models in the literature. Also, adsorption capacities of adsorbents were obtained from the breakthrough curve to observe the correlation between adsorption capacity and the physical properties of VOCs.
[References]
  1. Kim HS, Park YS, J. KSEE, 25, 977, 2003
  2. Lim JK, Lee SW, Kam SK, Lee DW, Lee MG, J. Environ. Sci., 14, 61, 2005
  3. Noll KE, Gounaris V, Hou WS, Adsorption technology for air and water pollution control, Lewis Publishers, Inc., Michigan, 1992
  4. Kim DJ, Shim WG, Moon H, Korean J. Chem. Eng., 18(4), 518, 2001
  5. Lee MG, Lee SW, Lee SH, Korean J. Chem. Eng., 23(5), 773, 2006
  6. Lee SW, Bae SK, Kwon JH, Na YS, An CD, Yoon YS, Song SK, J. KSEE, 27, 620, 2005
  7. Nelson GO, Harde CA, Am. Ind. Hyg. Assoc. J., 37, 391, 1974
  8. Nelson GO, Harde CA, Am. Ind. Hyg. Assoc. J., 37, 205, 1976
  9. Wood GO, Am. Ind. Hyg. Assoc. J., 55, 11, 1994
  10. Son MS, Kim SD, Woo KJ, Park HJ, Seo MC, Lee SH, Ryu SK, Korean Chem. Eng. Res., 44(6), 669, 2006
  11. Ruthven DM, Principles of Adsorption and Adsorption Processes, John Wiley, New York, 1984
  12. Yoon JH, Nelson GO, Am. Ind. Hyg. Assoc. J., 45, 509, 1984
  13. Yasyerli N, Dogu T, Dogu G, Ar I, Chem. Eng. Sci., 51(11), 2523, 1996
  14. Park SW, Choi BS, Lee JW, Sep. Sci. Technol., 42(10), 2221, 2007
  15. Park SW, Sung DH, Choi BS, Oh KJ, Moon KH, Sep. Sci. Technol., 41(12), 2665, 2006
  16. Oh KJ, Park DW, Kim SS, Park SW, Korean J. Chem. Eng., 27(2), 632, 2010
  17. Suzuki M, Adsorption Engineering, Kodansga Ltd., Tokyo, 1990