Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.48, No.6, 747-751, 2010
아임계 수 가수분해를 이용한 미역으로부터 아미노산 회수
Amino Acid Recovery from Brown Seaweed(Undaria pinnatifida) Using Subcritical Water Hydrolysis
본 연구에서는 아임계 수 가수분해 공정을 이용하여 동결건조 된 미역(Undaria pinnatifida)으로부터 아미노산 생산조건 및 생성된 물질의 특성에 대하여 고찰하였다. 가수분해 장치는 회분식으로 설계 되었으며, 반응기는 내경 4.6 cm, 200 cm3 부피 용량의 Hastelloy 276 강으로 제작된 것을 사용하였다. 반응기 내부에는 교반기가 부착되어 100 rpm으로 연속적으로 교반되도록 하였다. 시료는 동결건조 된 미역 파우더와 회수율 향상을 위해 부가된 1% acetic acid를 촉매로 한 반응용액을 1:100(w/v) 비율로 혼합시켜 반응을 진행시켰다. 반응물질의 혼합을 위해 100 rpm으로 일정하게 교반하였으며, 반응온도와 압력 변화에 따른 아미노산 생성 회수율을 고찰하였다. 실험조건은 온도 180~374 ℃, 반응시간 1시간이었다. 총 아미노산 함량은 고온의 조건에 비해 저온에서 높은 함량을 나타내었으며 분자량이 작은 아미 노산(glycine, alanine, serine 등)이 분자량이 큰 아미노산들보다 높은 함량을 나타내었다. 아미노산의 최대 회수율(290.84 μg/mL)은 220 ℃, 촉매 첨가조건에서 분석되었다.
The objective of this research were to produce amino acids from freezing-dried brown seaweed(Undaria pinnatifida) powder by sub- and supercritical water hydrolysis and to characterize the products. The hydrolysis was carried out in a batch type reactor consisting of 4.6 cm inside diameter and 200 cm3 vessel and stir made of Hastelloy 276. A stir inside the reactor was continuously moving at 100 rpm. Brown seaweed powder and 100 mL of 1% acetic acid in distilled water were charged into the reactor at a ratio of 1:100(w/v). The applied conditions were 180~374 ℃, respectively for 1 hour. The total amino acid content was found to be significantly higher in brown seaweed hydrolyzed by low temperature comparing to high temperature. The amounts of low molecular weight amino acids(glycine, alanine, serine etc) were higher than that of high molecular weight amino acids. The maximum yields of amino acids were produced at low temperature(220 ℃) with acid catalyst.
[References]
  1. Ministry of Maritime Affairs and Fisheries: Factbook., 986, 1997
  2. Lee JH, Sung VJ, J. Korean Soc. Food & Nutr., 9, 51, 1980
  3. Seo HB, Han JG, Choi WS, Lee OK, Choi SH, Lee HY, Jung KH, Korean J. Biotechnol, Bioeng., 23, 494, 2008
  4. Faaij APC, Bio-energy in Europe., 34, 322, 2006
  5. Shaw RW, Brill TB, Clifford AA, Eckert CA, Franck EU, Chem. Eng. News., 12, 26, 1991
  6. Savage PE, Gopalan S, Mizan TI, Martino CJ, Brock EE, AIChE J., 41(7), 1723, 1995
  7. Ishikawa T, Saka S, Cellulose, 8, 189, 2001
  8. Miyafuji H, Saka S, ACS Syn., 954, 422, 2007
  9. Martino CJ, Savage PE, Ind. Eng. Chem. Res., 38(5), 1784, 1999
  10. Goto M, Nada T, Kawajiri S, Kodama A, J. Chem. Eng. Japan., 30, 818, 1997
  11. Shaw RW, Brill TB, Clifford AA, Eckert CA, Franck EU, Chem. Eng. News, 12, 26, 1991
  12. Choi JW, Lim HJ, Han KS, Choi DH, Mokchae Konghak, 34, 44, 2006
  13. Kang KY, Kim YH, Chun BS, J. Korean Ind. Eng. Chem., 16(1), 28, 2005