Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.48, No.6, 673-678, 2010
활성탄소에 담지된 백금나노입자의 전기화학적 거동에 대한 그라파이트 나노섬유 첨가효과
Effect of Graphite Nanofibers Addition on the Electrochemical Behaviors of Platinum Nanoparticles Deposited on Activated Carbons
본 연구에서는 탄소지지체로 활성탄소를 주요재료로 사용하고 여기에 그라파이트 나노섬유(graphite nanofibers)를 함량별로 혼합시킨 후, 백금전구체를 포함하는 용액에 분산시키고, 화학적인 환원반응을 통해서 백금입자를 담지하여 제조하였다. 첨가하는 GNF의 함량을 조절하면서, 백금입자의 결정 크기와 담지함량을 제어할 수 있었다. GNF 함량이 15 wt%인 혼합지지체를 사용한 백금입자의 경우, 최대의 전기활성 특성을 나타내었다. 또한, GNF 함량을 0%에서 15%로 증가시킴에 따라 전기전도도가 10^(-4) S/cm에서 10^(-1) S/cm로 증가하였다. 첨가제 GNF를 10%까지 도입한 경우, 백금입자의 전기활성은 크게 증가하는 경향을 보이지만, 15%에서는 그 증가경향이 작아져서 포화되는 현상이 보였다. 이런 결과는 전기활성도의 변화가 혼합지지체의 전기전도도 변화와 백금이 담지된 함량, 그리고, 담지형태와 관련성이 있음을 알 수 있었다.
In the present study, mixed carbon-supported platinum(Pt) nanoparticles were prepared by a chemical reduction method of Pt precursor solution on two types of carbon materials such as activated carbons(ACs) and graphite nanofibers(GNFs). Average crystalline sizes and loading levels of Pt metal particles could be controlled by changing a content of GNFs. The highest electroactivity for methanol oxidation was obtained by preparing the carbon supports having 15 wt% GNFs. Furthermore, with an increase of GNFs content from 0% to 15%, an electrical conductivity was changed from 10^(-4) S/cm to 10^(-1) S/cm. By an introduction of 10 wt% GNFs additive, the electroactivity of platinum particles was enhanced, but was saturated in the case of 15 wt% GNFs contents. This was related with the fact that the electroactivity change was dependent on the electrical conductivity of mixed carbon supports and Pt particle deposition content or deposition morphology.
[References]
  1. Joo SH, Choi SJ, Oh H, Kwak J, Liu Z, Terasaki O, Ryoo R, Nature, 412, 169, 2001
  2. Park KW, Sung YE, J. Ind. Eng. Chem., 12(2), 165, 2006
  3. Kwak C, Park TJ, Suh DJ, Chem. Eng. Sci., 60(5), 1211, 2005
  4. Kuk ST, Wieckowski A, J. Power Sources, 141(1), 1, 2005
  5. Chen CY, Yang P, Lee YS, Lin KF, J. Power Sources, 141(1), 24, 2005
  6. Kim T, Takahashi M, Nagai M, Kobayashi K, Electrochim. Acta, 50, 813, 2004
  7. Zhou WJ, Song SQ, Li WZ, Sun GQ, Xin Q, Kontou S, Poulianitis K, Tsiakaras P, Solid State Ion., 175(1-4), 797, 2004
  8. Fritts SD, Gopal R, J. Electrochem. Soc., 140, 3337, 1993
  9. Statti P, Poltarzewski Z, Alderucci V, Maggio G, Giordano N, Int. J. Hydrogen Energy, 19, 523, 1994
  10. Appleby AJ, J. Power Sources, 37, 223, 1992
  11. Park SJ, Jeong HJ, Nah C, Polym.(Korea), 27(1), 46, 2003
  12. Lin CW, Thangamuthu R, Yang CJ, J. Membr. Sci., 253(1-2), 23, 2005
  13. Lee CS, Yi SC, Korean J. Chem. Eng., 21(6), 1153, 2004
  14. Guo JW, Zhao TS, Prabhuram J, Wong CW, Electrochim. Acta, 50(10), 1973, 2005
  15. Rao RK, Trivedi DC, Coord. Chem. Rev., 249, 613, 2005
  16. Kim S, Park SJ, Electrochim. Acta, 52(9), 3013, 2007
  17. Kim S, Jung Y, Park SJ, Carbon Lett., 10, 213, 2009
  18. Wang HJ, Yu H, Peng F, Lv P, Electrochem. Commun., 8, 499, 2006
  19. Park SS, Rhee JK, Jeon YK, Choi SW, Shul YG, Carbon Lett., 11, 38, 2010
  20. Kim S, Park SJ, J. Solid State Electrochem., 11, 821, 2007
  21. Kinoshita K, Carbon: Electrochemical and Physicochemical Properties, John Wiley & Sons, New York, 31-40, 1988
  22. Arico AS, Srinivasan S, Antonucci V, Fuel Cells, 1, 133, 2001
  23. Kim S, Park SJ, J. Power Sources, 159(1), 42, 2006