Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.48, No.3, 382-390, 2010
하이브리드시스템을 이용한 악취폐가스 처리
Treatment of Malodorous Waste Air Using Hybrid System
본 연구에서는 광촉매반응기/폐가스 가습조(유동상호기 및 무산소조)를 포함한 바이오필터공정으로 이루어진 하이브리드시스템을 구축하여 퇴비공장 또는 공공시설에서 발생되는 황화수소, 암모니아 및 휘발성 유기화합물을 포함한 악취폐가스에 대한 처리효율을 제고하고 종합적인 적정 작업조건을 구축하였다. 악취가스(2 L/min)에 포함된 암모니아(300 ppmv)의 경우 광촉매반응기에서 약 22%가 제거되고, 폐가스 가습조에서 약 55%가 제거되고, 후 공정인 바이오필터에서 나머지인 약 23%가 모두 제거되었다. 악취가스에 포함된 톨루엔(100 ppmv)의 경우 광촉매반응공정에서 약 20%가 제거되고, 폐가스 가습조(유동상 호기 및 무산소조)에서 약 10% 제거되며 마지막 공정인 바이오필터에서 나머지 70% 모두가 제거되었다. 따라서 물에 용해도가 높은 암모니아의 경우에는 폐가스가습조에서 주로 제거되었고, 용해도가 낮은 톨루엔의 경우는 바이오필터에서 주로 제거되었다. 한편 황화수소(10 ppmv)는 광촉매반응공정에서 거의 처리되고 잔류 trace는 폐가스가습조에 용해되어서 바이오필터로 인입되는 가습된 feed에서 황화수소가 검지되지 않았다. 폐가스 가습조(유동상호기 및 무산소조)에서의 nitrate 농도는 무산소조에서 발생하는 탈질반응 때문에 무산소조 경우가 유동상호기조보다 약 3 ppm 정도 낮았다. 또한 폐가스가습조의 용존 암모니아 농도는 실험 시작부터 1,500~2,000 ppm 사이의 높은 값을 유지하였는데, 이는 폐가스 가습조 내부에 있는 용수에 포함된 염화암모늄 및 기타 암모니아성 질소원에 기인한다고 간주된다.
In this research hydrogen sulfide, ammonia and toluene were designated as the representative source of malodor and VOC, respectively, frequently generated at the compost manufacturing factory and publicly owned facilities. The optimum operating condition to treat the waste air(2 L/min) containing malodor was constructed using photocatalytic reactor/biofilter process with humidifier composed of fluidized aerobic anf anoxic reactor. The ammonia(300 ppmv) of fed-waste air was removed by 22, 55 and 23% at the stage of photocatalytic reactor, humidifier and biofilter, respectively. The toluene(100 ppmv) of fed-waste air was removed by 20, 10 and 70% at the stage of photocatalytic reactor, humidifier and biofilter, respectively. Therefore the water-soluble ammonia and the water-insoluble toluene were treated mainly at the stage of humidifier and biofilter, respectively. In addition, hydrogen sulfide(10 ppmv) was almost treated at the stage of photocatalytic reactor and its negligible trace was absorbed in humidifier so that it was not detected before biofilter process. The nitrate concentration of the process water from anoxic reactor was found lower by 3 ppm than that from fluidized aerobic reactor. Besides, the dissolved ammonia-nitrogen concentration of the process water from humidifier remained at the high value of 1,500-2,000 ppm, which may be attributed to the existence of ammonium chloride and other source of ammonium nitrogen.
[References]
  1. Hirai M, Ohtake M, Shoda M, J. Ferment. Bioeng., 70, 334, 1990
  2. Easter C, Quigley C, Burrowes P, Witherspoon J, Apgar D, Chem. Eng. J., 113(2-3), 93, 2005
  3. Islander RI, Devinny JS, Mansfield F, Postyn A, Shin H, J. Environ. Eng., 117, 751, 1990
  4. Oyarzun P, Arancibia F, Canales C, Aroca GE, Process Biochemistry, 39, 165, 2003
  5. Cho KS, Ryu HW, Lee NY, J. Biosci. Bioeng., 90(1), 25, 2000
  6. Wani AH, Branion MR, Lau AK, J. Hazard. Mater., 60, 287, 1998
  7. Chung YC, Huang CP, Tseng CP, Biotechnol. Prog., 12(6), 773, 1996
  8. Chung YC, Huang C, Tseng CP, J. Biotechnol., 52, 31, 1996
  9. Chung YC, Huang C, Tseng CP, Chemosphere, 43, 1043, 2001
  10. Cox HHJ, Deshusses MA, Chem. Eng. J., 87(1), 101, 2002
  11. Shareefdeen Z, Herner B, Webb D, Verhaeghe L, Wilson S, Chem. Eng. J., 113(2-3), 215, 2005
  12. Ottengraf SPP, Exhaust gas purification, Biotechnology (Rehm HJ, Reed G, eds) Vol. 8, pp.426-452, VCH, Weinheim, Germany, 1986
  13. Deshusses MA, Hamer G, Dunn IJ, Environ. Sci. Technol., 29, 1048, 1995
  14. Deshusses MA, Dunn IJ, Modelling experiments on the kinetics of mixed-solvent removal from waste gas in a biofilter, Proceedings of the 6th European Congress on Biotechnology (Alberghina L, Frontali L, Sensi P, eds.), pp.1191-1198, Elsevier Science B. V., 1994
  15. Deshusses MA, Hamer G, Bioprocess Eng., 9, 141, 1993
  16. Lim KH, Lee EJ, Korean J. Chem. Eng., 20(2), 315, 2003
  17. Buchner R, Ph. D. Thesis, T. U. Wien, Austria, 1989
  18. Leson G, Winer AM, J. Air & Waste Manage. Assoc., 41, 1045, 1991
  19. Sorial GA, Smith FL, Suidan MT, Biswas P, J. Air Waste Manage. Assoc., 45, 801, 1995
  20. Lim KH, Park SW, Lee EJ, Hong SH, Korean J. Chem. Eng., 22(1), 70, 2005
  21. Lim KH, Park SW, Lee EJ, Korean J. Chem. Eng., 22(6), 922, 2005
  22. Lim KH, Park SW, Korean J. Chem. Eng., 21(6), 1161, 2004
  23. Chung YJ, J. KSWW, 13, 43, 1999
  24. Park SJ, Seo JS, J. Korean Solid Waste Engineering Society, 17, 243, 2000
  25. Gonzalez-Matute R, Rinker DL, Bioresour. Technol., 97(14), 1679, 2006
  26. Kim KY, Choi HL, J. Anim. Sci. & Technol. (Kor.), 43, 1005, 2001
  27. Kuroda K, Osada T, Yonaga M, Kanematu A, Nitta T, Mouri S, Kojima T, Bioresour. Technol., 56(2-3), 265, 1996
  28. Fami, Nishihima W, Okada M, In Proceeding of Enviro 2002 & IWA 3rd World Water Conference, Melbourne, Australia, 2002
  29. Scheck CK, Frimmel FH, Water Res., 29, 2346, 1995
  30. Lim KH, Jung YJ, Park LS, Min KS, HWAHAK KONGHAK, 39(5), 600, 2001
  31. Lee EJ, Lim KH, Korean Chem. Eng. Res., 46, 808, 2008