Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.48, No.3, 359-364, 2010
삼상 슬러리 기포탑의 세 기능영역 체류량 특성
Holdup Characteristics of Three Functional Regions in a Slurry Bubble Column
직경이 0.152 m인 삼상슬러리 기포탑에서 연속 슬러리상 영역(εf), 기포영역(εb) 그리고 기포의 후면에서 기포와 같이 상승하는 소용돌이 영역인 wake 영역(εw)의 세 종류의 기능영역을 분류하여 이들 각 영역의 체류량을 구하였다. 기포탑에서 기포영역과 wake 영역의 체류량은 전기저항 탐침법에 의해 결정하였다. 기체유속(UG)과 슬러리상에서 고체입자의 농도(Sc)가 삼상슬러리 기포탑에서 각 기능영역의 체류량에 미치는 영향을 검토하였다. 슬러리 기포탑에서 기체유속이 증가하면 연속 슬러리상의 체류량은 감소하였으나, 기포와 wake의 체류량은 증가하였다. 슬러리상에서 고체입자의 농도가 증가함에 따라 연속 슬러리상 영역의 체류량은 증가하였으나, 기포와 wake 영역의 체류량은 감소하는 경향을 나타내었다. wake 영역의 체류량은 기포영역 체류량의 15~40% 정도를 나타났으며, 기체유속이 증가함에 따라 wake 영역의 기포영역에 대한 분율은 감소하였다. 본 연구의 범위에서 세 기능영역의 체류량은 각각 실험 변수의 상관식으로 나타낼 수 있었다.
Three kinds of functional regions such as continuous slurry(εf), bubble(εb) and wake(εw) regions were identified, and the individual phase holdups of each functional region were determined in a three-phase slurry bubble column of 0.152 m ID. The holdups of bubble and wake were measured by adopting the electrical resistivity probe method. Effects of gas velocity and solid concentration in the slurry phase on the individual holdups of functional regions in the column were discussed. The holdup of continuous slurry phase decreased but that of bubble or wake increased, with an increase in the gas velocity in the column. The increase of solid content in the slurry phase could lead to the increase in the holdup of continuous slurry phase but decrease in the bubble or wake holdup. The portion of wake holdup was in the range of 15~40% of the bubble holdup, which decreased with increasing gas velocity or solid content in the slurry phase. The individual holdups of three functional regions were well correlated with operating variables within this experimental conditions.
[References]
  1. Krishna R, Sie ST, Fuel Process. Technol., 64(1-3), 73, 2000
  2. Davis BH, Catal. Today, 71(3-4), 249, 2002
  3. Behkish A, Lemoine R, Sehabiague L, Oukaci R, Morsi BI, Chem. Eng. J., 128(2-3), 69, 2007
  4. Bakopoulos A, Chem. Eng. Sci., 61(2), 538, 2006
  5. Kim SD, Kang Y, Stud. Surf. Sci. Catal., 159, 103, 2006
  6. Kitano K, Fan LS, Chem. Eng. Sci., 43, 1355, 1988
  7. Kang Y, Kim SD, ICEC Process Des. Dev., 25, 717, 1986
  8. Cardoso ON, Mayor TS, Pinto AMF, Campos JBLM, Chem. Eng. Sci., 4159, 2003
  9. Li Y, Zhang JP, Fan LS, Chem. Eng. Sci., 54(21), 5101, 1999
  10. Sanada T, Shirota M, Watanabe M, Chem. Eng. Sci., 62(24), 7264, 2007
  11. Celata GP, Cumo M, D'Annibale F, Tomiyama A, Int'l J. Multiphase Flow, 30, 939, 2006
  12. Lertnuwat B, Bunyajitradulya A, Nuclear Eng. Des., 237, 1526, 2007
  13. Chen RC, Chou IS, Expt. Therm. Fluid Sci., 17, 165, 1998
  14. Shin IS, Son SM, Kim UY, Kang Y, Kim SD, Jung H, Korean J. Chem. Eng., 26(2), 587, 2009
  15. Kang Y, Lee IK, Shin IS, Son SM, Kim SD, Jung H, Korean Chem. Eng. Res., 46(3), 451, 2008
  16. Kang SH, Son SM, Kang Y, Bae JW, Jun KW, KJChE J., 897, 2008
  17. Kang Y, Cho YJ, Woo KJ, Kim KI, Kim SD, Chem. Eng. Sci., 55(2), 411, 2000
  18. Kang SH, Son SM, Kang Y, Bae JW, Jun KW, Korean J. Chem. Eng., 25(4), 897, 2008