Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.48, No.3, 342-349, 2010
분리벽형 반응증류탑을 이용한 젖산회수
Recovery of Lactic Acid Using Reactive Dividing Wall Column
젖산은 식품, 화학 및 의약 산업에서 널리 이용되며 생분해성 고분자인 폴리젖산(poly lactic acid)의 원료로서 요구량이 증대되고 있다. 합성에 의한 생산 방법에서 환경 친화적이고 경제적인 발효에 의한 생산 방법으로 바뀌는 추세이다. 그러나 발효에 의해 생성된 생산물은 과량의 물과 고비점 부산물을 포함하고 있다. 고비점 물질의 존재와 젖산의 비휘발성은 젖산 분리 및 정제를 어렵게 만든다. 또한 정제 및 분리 공정은 많은 투자 비용과 에너지 소모를 요구한다. 반응증류 공정은 기존 공정과 비교하여 높은 선택도와 수율을 얻을 수 있다. 분리벽형 반응 증류탑과 같이 새롭게 통합된 공정은 투자 비용과 에너지 비용을 줄일 수 있고 순수한 젖산을 회수할 수 있다. 본 연구에서는 젖산의 분리 및 정제를 위한 설계구조들을 제안하였다. 제안된 설계구조들은 SQP 방법에 의해 최적화되었으며 최적화된 설계 구조들 사이의 에너지 소모량 및 생산물 순도를 비교하였다. 그리고 공정 성능과 최적화된 공정에 대한 주요 공정변수들의 영향을 조사하였다.
Lactic acid is widely used in the food, chemical and pharmaceutical industries, and there is an increasing demand for lactic acid as the raw material of poly lactic acid(PLA), which is a biodegradable polymer. Lactic acid production has been changing over from production by synthesis to production by fermentation, since the fermentation process is more nature friendly and economic. However, the fermentation method generates excess water and impurities with high boilers. The presence of high boilers and non volatility of lactic acid makes the separation of lactic acid very difficult job. Also, the purification-separation process requires the many investment costs and energy costs. Reactive distillation concept was also introduced for the process, giving higher selectivity and yield compared to the convention method. We introduce a new highly integrated process, reactive diving wall column, to reduce the capital and energy cost for producing a pure lactic acid. The reactive dividing wall column combines reactive distillation and dividing wall column. We compared capital and energy consumption required for the purification of lactic acid the between the proposed design structures. And we examined the effect of major process variables on the process performance and determined optimal process.
[References]
  1. Datta R, Kirk-Orthmer Encycloedia of Chemical Technology, 13, 1042, 1995
  2. Husson BS, “Regeneration of Basic Adsorbents in the Recovery of Carboxylic Acids from Dilute Aqueous Solution and Multiple Acid Equilibria in Adsorption of Carboxylic Acids from Dilute Aqueous Solution,” Ph.D..Thesis, University of California at Berkeley.
  3. Kertes AS, King CJ, Biotech. Bioeng, 28, 269, 1986
  4. Timmer JM, Kromkamp J, Robbertsen T, J. Membr. Sci., 92(2), 185, 1994
  5. Subawalla H, Fair JR, Ind. Eng. Chem. Res., 38(10), 3696, 1999
  6. Degarmo JL, Parulekar VN, Pinjala V, Chem. Eng. Prog., 43, 1992, 1992
  7. Choi JI, Hong WH, J. Chem. Eng. Jpn., 32(2), 184, 1999
  8. Choi J, Hong W, Chang H, Int. J. Chem. Kinet., 28, 37, 1996
  9. Seo Y, Hong WH, J. Chem. Eng. Jpn., 33(1), 128, 2000
  10. Kumar R, Mahajani SM, Nanavati H, Noronha SB, J. Chem. Technol. Biotechnol., 81(7), 1141, 2006
  11. Kumar R, Nanavati H, Noronha SB, Mahajani SM, J. Chem. Technol. Biotechnol., 81(11), 1767, 2006
  12. Kumar R, Mahajani SM, Ind. Eng. Chem. Res., 46(21), 6873, 2007
  13. Asthana N, Kolah A, Vu DT, Lira CT, Miller DJ, Organic Process Research & Development, 9, 599, 2005
  14. Adams TA, Seider WD, AIChE J., 54(10), 2539, 2008
  15. Sanz MT, Murga R, Beltran S, Cabezas JL, Coca J, Ind. Eng. Chem. Res., 43(9), 2049, 2004
  16. Sanz M, Gmehling J, J. Chem. Eng. Data., 50, 85, 2005
  17. Edgar TF, Himmelblau DM, “Optimization of Chemical Process,” McGraw-Hill, 7, 1988
  18. Hu M, Zhou XG, Yuan WK, Chem. Eng. Sci., 54(10), 1353, 1999