Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.48, No.3, 292-299, 2010
그래핀 및 그래핀 기반 나노복합체의 에너지저장소자용 전극 특성
Electrode Properties of Graphene and Graphene-Based Nanocomposites for Energy Storage Devices
그래핀(graphene)은 sp2 탄소원자들이 벌집 격자를 이룬 형태의 2차원 나노시트를 의미하며, 높은 비표면적(이론치 2600 m2 g-1)과 우수한 전기전도도(전형치 8×10^(5) S cm-1) 및 기계적 강도로 인해 리튬이온전지의 음전극 활물질 및 초고용량 커패시터의 전극 활물질로서 사용 가능성이 높아지고 있다. 본 총설에서는 현재까지 알려진 그래핀 나노시트와 그래핀을 기반으로 하는 나노복합체의 제조법을 소개하고, 이를 리튬이온전지와 초고용량 커패시터의 전극소재로 적용하였을 때의 특성을 그 나노구조적 관점과 연관하여 논의하였다.
Graphene is a two-dimensional nanosheet consisting of honeycomb lattices of sp2 carbon atoms. It is one of promising active materials for the anode of lithium-ion battery and the electrode of supercapacitor, due to its large specific surface area(theoretically 2600 m2 g-1), high electric conductivity(typically 8×10^(5) S cm-1), and mechanical strength. In this review, the synthetic methods of graphene nanosheet and graphene-based nanocomposite are introduced. Also, the electrochemical properties obtainable when the graphene-based materials are adopted to the electrodes of lithium-ion battery and supercapacitor are discussed along with their nanostructures.
[References]
  1. Sato K, Noguchi M, Demachi A, Oki N, Endo M, Science, 264(5158), 556, 1994
  2. Kaskhedikar NA, Maier J, Adv. Mater., 21(25-26), 2664, 2009
  3. Liang MH, Luo B, Zhi LJ, Int. J. Energy Res., 33(13), 1161, 2009
  4. Liang M, Zhi L, J. Mater. Chem., 19, 5871, 2009
  5. Pumera M, Chem. Record, 9, 211, 2009
  6. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA, Science, 306, 666, 2004
  7. McAllister MJ, Li JL, Adamson DH, Schniepp HC, Abdala AA, Liu J, Herrera-Alonso M, Milius DL, Car R, Prud’homme RK, Aksay IA, Chem. Mater., 19, 4396, 2007
  8. Si Y, Samulski ET, Chem. Mater., 20, 6792, 2008
  9. Kane CL, Nature, 438, 168, 2005
  10. Yoo E, Kim J, Hosono E, Zhou H, Kudo T, Honma I, Nano Lett., 8, 2277, 2008
  11. Mukhopadhyay I, Hoshino N, Kawasaki S, Okino F, Hsu WK, Touhara H, J. Electrochem. Soc., 149(1), A39, 2002
  12. Takamura T, Endo K, Fu L, Wu Y, Lee KJ, Matsumoto T, Electrochim. Acta, 53(3), 1055, 2007
  13. Gautier S, Leroux F, Frackowiak E, Faugere AM, Rouzaud JN, Beguin F, J. Phys. Chem. A, 105(24), 5794, 2001
  14. Suzuki T, Hasegawa T. Mukai SR, Tamon H, Carbon, 41, 1933, 2003
  15. Li D, Muller MB, Gilje S, Kaner RB, Wallace GG, Nature Nanotech., 3, 101, 2008
  16. Li D, Kaner RB, Science, 320, 1170, 2008
  17. Wang C, Li D, Too CO, Wallace GG, Chem. Mater., 21, 2604, 2009
  18. Wang G, Shen X, Yao J, Park J, Carbon, 47, 2049, 2009
  19. Guo P, Song H, Chen X, Electrochem. Commun., 11, 1320, 2009
  20. Pan D, Wang S, Zhao B, Wu M, Zhang H, Wang Y, Jiao Z, Chem. Mater., 21, 3136, 2009
  21. Wang X, Zeng Z, Ahn H, Wang G, Appl. Phys. Lett., 95, 183103, 2009
  22. Wang G, Wang B, Wang X, Park J, Dou S, Ahn H, Kim K, J. Mater. Chem., 19, 8378, 2009
  23. Chou SL, Wang JL, Choucair M, Liu HK, Stride JA, Dou SX, Electrochem. Commun., 12, 303, 2010
  24. Liu X, Hu YS, Muller JO, Schlogl R, Maier J, Su DS, Chem Sus Chem, in press., 3, 2010
  25. Murugan AV, Muraliganth T, Manthiram A, Chem. Mater., 21, 5004, 2009
  26. Wang D, Choi D, Li J, Yang Z, Nie Z, Kou R, Hu D, Wang C, Saraf LV, Zhang J, Aksay IA, Liu J, ACS Nano, 3, 907, 2009
  27. Choi D, Wang D, Viswanathan VV, Bae IT, Wang W, Nie Z, Zhang JG, Graff GL, Liu J, Yang Z, Duong T, Electrochem. Commun., in press., 12, 2010
  28. Paek SM, Yoo E, Honma I, Nano Lett., 9, 72, 2009
  29. Yao J, Shen X, Wang B, Liu H, Wang G, Electrochem. Commun., 11, 1849, 2009
  30. Yang S, Cui G, Pang S, Cao Q, Kolb U, Fang X, Maier J, Mullen K, ChemSus Chem., in press., 3, 2010
  31. Xu C, Wang X, Yang L, Wu Y, J. Solid-State Chem., 182, 2486, 2009
  32. Ji F, Li YL, Feng JM, Su D, Wen YY, Feng Y, Hou F, J. Mater. Chem., 19, 9063, 2009
  33. Ding Y, Jiang Y, Xu F, Yin J, Ren H, Zhou Q, Long Z, Zhang P, Electrochem. Commun., 12, 10, 2010
  34. Yang CK, Appl. Phys. Lett., 94, 163115, 2009
  35. Choucair M, Thordarson P, Stride JA, Nature Nanotech., 4, 30, 2009
  36. Zhu Z, Su D, Weinberg G, Jentoft RE, Schlogl R, Small, 1, 107, 2005
  37. Murugan AV, Muraliganth T, Manthiram A, J. Phys. Chem., C112, 14665, 2008
  38. Wang DW, Li F, Zhao J, Ren W, Chen ZG, Tan J, Wu ZS, Gentle I, Lu GQ, Cheng HM, ACS Nano, 3, 1745, 2009
  39. Stoller MD, Park S, Zhu Y, An J, Ruoff RS, Nano Lett., 8, 3498, 2008
  40. Wang Y, Shi Z, Huang Y, Ma Y, Wang C, Chen M, Chen Y, J. Phys. Chem., C113, 13103, 2009
  41. Chen Y, Zhang X, Yu P, Ma YW, J. Power Sources, 195(9), 3031, 2010
  42. Li F, Song J, Yang H, Gan S, Zhang Q, Han D, Ivaska A, Niu L, Nanotechnology, 20, 455602, 2009