Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.48, No.3, 283-291, 2010
리튬이온전지용 TiO2 나노튜브 음전극 특성
Anode Properties of TiO2 Nanotube for Lithium-Ion Batteries
리튬이온전지의 음전극으로 사용하기 위해 주로 알카리 수열합성법과 열처리에 의해 제조되는 TiO2 나노튜브의 전기화학적 특성에 관한 연구결과를 조사하여, 그 충방전 특성을 분석하였다. 현재까지 리튬과 TiO2의 전기화학반응으로 생성되는 LixTiO2의 이론용량인 335 mAh g^(-1)(x=1)를 초과하는 최대방전용량 338 mAh g^(-1)(x=1.01)을 TiO2(B) 상을 갖는 나노튜브가 나타내었다. 이것은 리튬의 자가확산이 활성에너지 0.48 eV 정도로 느리므로 이보다 확산거리가 짧도록 TiO2 나노튜브의 구조를 조정하여 리튬 수송이 원활하도록 하였기 때문이다. 또한 TiO2 나노튜브 구조체는 벌크상은 물론 표면에서의 뛰어난 이온저장성 때문에 리튬이온전지의 음전극 소재뿐만 아니라 고출력 특성이 필요한 커페시터 소자의 전극소재로도 활용할 수 있다.
In this review, the studies on the electrochemical properties of TiO2 nanotube as an anode material of lithium-ion battery, which was prepared by an alkaline hydrothermal reaction and anneling process, were investigated and analyzed in terms of charge-dischage characteristics. Up to date, a maximum discharge capacity of 338 mAh g^(-1)(x=1.01) was achieved by the nanotube with TiO2(B) phase, whereas the theoretical capacity of TiO2 anode was 335 mAh g^(-1)(x=1) in the basis of LixTiO2 as a product of electrochemical reaction between TiO2 and lithium. This was due to fast lithium transport by a shortened diffusion path provided by controlling the nanostructure of TiO2, because the self-diffusion of lithium was slow in a basis of its activation energy as 0.48 eV. Due to an excellent ion storage capabilities in both the surface and the bulk phase, the TiO2 nanotube could be a promising active material as both an anode of lithium-ion battery and an electrode of capacitor with high-rate performances.
[References]
  1. Tarascon JM, Armand M, Nature, 414, 359, 2001
  2. Arico AS, Bruce P, Scrosati B, Tarascon JM , van Schalkwijk W, Nature Mater., 4, 366, 2005
  3. Bruce PG, Scrosati B, Tarascon JM, Angew. Chem. Intern. Ed., 47, 2930, 2008
  4. Balaya P, Bhattacharyya AJ, Jamnik J, Zhukovskii YF, Kotomin EA, Maier J, J. Power Sources, 159(1), 171, 2006
  5. Meethong N, Huang HYS, Carter WC, Chiang YM, Electrochem. Solid State Lett., 10(5), A134, 2007
  6. Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K, Langmuir, 14(12), 3160, 1998
  7. Bavykin DV, Friedrich JM, Walsh FC, Adv. Mater., 18(21), 2807, 2006
  8. Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K, Adv. Mater., 11(15), 1307, 1999
  9. Chen Q, Zhou WZ, Du GH, Peng LM, Adv. Mater., 14(17), 1208, 2002
  10. Zhang M, Jin ZS, Zhang JW, Guo XY, Yang HJ, Li W, Wang XD, Zhang ZJ, J. Mol. Catal. A-Chem., 217(1-2), 203, 2004
  11. Bavykin DV, Parmon VN, Lapkin AA, Walsh FC, J. Mater. Chem., 14, 3370, 2004
  12. Ma RZ, Bando Y, Sasaki T, J. Phys. Chem. B, 108(7), 2115, 2004
  13. Zhang S, Peng LM, Chen Q, Du GH, Dawson G, Zhou WZ, Phys. Rev. Lett., 91, 256103, 2003
  14. Bavykin DV, Walsh FC, Eur. J. Inorg. Chem., 977, 2009
  15. Kavan L, Gratzel M, Rathousky J, Zukal A, J. Electrochem. Soc., 143(2), 394, 1996
  16. Wagemaker M, Borghols WJH, Mulder FM, J. Am. Chem. Soc., 129, 4323, 2009
  17. Sudant G, Baudrin E, Larcher D, Tarascon JM, J. Mater. Chem., 15, 1263, 2005
  18. Hardwick LJ, Holzapfel M, Novak P, Dupont L, Baudrin E, Electrochim. Acta, 52(17), 5357, 2007
  19. Kavan L, Rathousky J, Gratzel M, Shklover V, Zukal A, J. Phys. Chem. B, 104(50), 12012, 2000
  20. Kavan L, Kalbac M, Zukalova M, Exnar I, Lorenzen V, Nesper R, Gratzel M, Chem. Mater., 16, 477, 2004
  21. Zukalova M, Kalbac M, Kavan L, Exnar I, Gratzel M, Chem. Mater., 17, 1248, 2005
  22. Wagemaker M, van de Krol R, Kentgens APM, van Well AA, Mulder FM, J. Am. Chem. Soc., 123(46), 11454, 2001
  23. Wagemaker M, Kentgens APM, Mulder FM, Nature, 418, 397, 2002
  24. Wagemaker M, Borghols WJH, van Eck ERH, Kentgens APM, Kearley GJ, Mulder FM, Chem. Eur. J., 13, 2023, 2007
  25. Kim DH, Yoon JH, Lee KS, Jung YH, Lee BR, Jang JS, Choi DK, Kim SJ, Sun YK, Lee KS, J. Nanosci. Nanotech., 8, 5022, 2008
  26. Oh SW, Park SH, Sun YK, J. Power Sources, 161(2), 1314, 2006
  27. Baudrin E, Cassaignon S, Koelsch M, Jolivet JP, Dupont L, Tarascon JM, Electrochem. Commun., 9, 337, 2007
  28. Jiang CH, Honma I, Kudo T, Zhou HS, Electrochem. Solid State Lett., 10(5), A127, 2007
  29. Jiang CH, Wei MD, Qi ZM, Kudo T, Honma I, Zhou HS, J. Power Sources, 166(1), 239, 2007
  30. Yang J, Jin Z, Wang X, Li W, Zhang J, Zhang S, Guo X, Zhang Z, Dalton Trans., 3898, 2003
  31. Yao BD, Chan YF, Zhang XY, Zhang WF, Yang ZY, Wang N, Appl. Phys. Lett., 82, 281, 2003
  32. Morgado Jr. E, de Abreu MAS, Pravia ORC, Marinkovic BA, Jardim PM, Rizzo FC, Araujo AS, Solid State Sci., 8, 888, 2006
  33. Ma RZ, Fukuda K, Sasaki T, Osada M, Bando Y, J. Phys. Chem. B, 109(13), 6210, 2005
  34. Kukovecz A, Hodos N, Horvath E, Radnoczi G, Konya Z, Kiricsi I, J. Phys. Chem. B, 109(38), 17781, 2005
  35. Cortes-Jacome MA, Ferrat-Torres G, Ortiz LFF, Angeles-Chavez C, Lopez-Salinas E, Escobar J, Mosqueira ML, Toledo-Antonio JA, Catal. Today, 126(1-2), 248, 2007
  36. Zhu KR, Yuan Y, Zhang MS, Hong JM, Deng Y, Yin Z, Solid State Commun., 144, 450, 2007
  37. Thorne A, Kruth A, Tunstall D, Irvine JTS, Zhou WZ, J. Phys. Chem. B, 109(12), 5439, 2005
  38. Lan Y, Gao XP, Zhu HY, Zheng ZF, Yan TY, Wu F, Ringer SP, Song DY, Adv. Funct. Mater., 15(8), 1310, 2005
  39. Gajovic A, Friscic I, Plodinec M, Ivekovic D, J. Mol. Struct., 924, 183, 2009
  40. Jung HG, Oh SW, Ce J, Jayaprakash N, Sun YK, Electrochem. Commun., 11, 756, 2009
  41. Wang ZY, Liu SZ, Chen G, Xia DG, Electrochem. Solid State Lett., 10(3), A77, 2007
  42. Lee DH, Park JG, Choi KJ, Choi HJ, Kim DW, Eur. J. Inorg. Chem., 878, 2008
  43. Inaba M, Oba Y, Niina F, Murota Y, Ogino Y, Tasaka A, Hirota K, J. Power Sources, 189(1), 580, 2009
  44. Zhou YK, Cao L, Zhang FB, He BL, Li HL, J. Electrochem. Soc., 150(9), A1246, 2003
  45. Gao XP, Lan Y, Zhu HY, Liu JW, Ge YP, Wu F, Song DY, Electrochem. Solid State Lett., 8(1), A26, 2005
  46. Li JR, Tang ZL, Zhang ZT, Electrochem. Solid State Lett., 8(6), A316, 2005
  47. Xu JW, Ha CH, Cao B, Zhang WF, Electrochim. Acta, 52(28), 8044, 2007
  48. Kim J, Cho J, J. Electrochem. Soc., 154(6), A542, 2007
  49. Das K, Panda SK, Chaudhuri S, J. Cryst. Growth, 310(16), 3792, 2008
  50. Armstrong AR, Armstrong G, Canales J, Bruce PG, Angew. Chem. Intern. Ed., 43, 2286, 2004
  51. Armstrong AR, Armstrong G, Canales J, Garcia R, Bruce PG, Adv. Mater., 17(7), 862, 2005
  52. Armstrong AR, Armstrong G, Canales J, Bruce PG, J. Power Sources, 146(1-2), 501, 2005
  53. Armstrong G, Armstrong AR, Bruce PG, Reale P, Scrosati B, Adv. Mater., 18(19), 2597, 2006
  54. Wilkening M, Lyness C, Armstrong AR, Bruce PG, J. Phys. Chem. C, 113, 4741, 2009
  55. Armstrong G, Armstrong AR, Canales J, Bruce PG, Chem. Commun., 2454, 2005
  56. Armstrong G, Armstrong AR, Canales J, Bruce PG, Electrochem. Solid State Lett., 9(3), A139, 2006
  57. Tsai MC, Chang JC, Sheu HS, Chiu HT, Lee CY, Chem. Mater., 21, 499, 2009
  58. Tang W, J. Mater. Chem., 14, 3457, 2004
  59. Yoon S, Ka BH, Lee C, Park M, Oh SM, Electrochem. Solid State Lett., 12(2), A28, 2009
  60. Xu JW, Wang YF, Li ZH, Zhang W, J. Power Sources, 175(2), 903, 2008
  61. Wang Q, Wen ZH, Li JH, Adv. Funct. Mater., 16(16), 2141, 2006
  62. Wang Q, Wen Z, Li J, J. Nanosci. Nanotech., 7, 3328, 2007
  63. Brousse T, Marchand R, Taberna PL, Simon P, J. Power Sources, 158(1), 571, 2006
  64. Wei MD, Qi ZM, Ichihara M, Honma I, Zhou HS, Chem. Phys. Lett., 424(4-6), 316, 2006
  65. Wang Q, Wen ZH, Li JH, Inorg. Chem., 45(17), 6944, 2006
  66. Zhang H, Li GR, An LP, Yan TY, Gao XP, Zhu HY, J. Phys. Chem. C, 111, 6143, 2007
  67. Wang YF, Wu MY, Zhang WF, Electrochim. Acta, 53(27), 7863, 2008