Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.47, No.6, 755-761, 2009
톨루엔-크레졸의 정압 기-액 평형
Isobaric Vapor-Liquid Equilibrium of Toluene and Cresol Systems
일반적으로 비등점의 차이가 큰 물질들은 그 물리적 성질의 차이로 인해 혼합물에서 비이상적인 상거동을 보이며, 이러한 혼합물의 상거동 특성을 이해하기 위해서는 정확한 실험적 데이터가 필요하다. 본 연구에서는 재순환 평형조가 포함된 기-액 상평형 장치를 사용하여 10, 30, 60 kPa에서 톨루엔과 크레졸 혼합물에 대한 정압 기-액 평형 실험을 행하였다. 측정한 기-액 평형 데이터는 NRTL과 UNIQUAC 모델식을 이용하여 잘 적합할 수 있었으며 Gibbs/Duhem 식에 근거한 열역학적 건전성 테스트를 수행하여 실험결과의 건전성을 확인하였다. 한편, 혼합물의 과잉몰부피를 측정하여 Redlich-Kister 다항식으로 나타내었다.
To a first approximation, phase behavior of a system becomes increasingly skew in proportion to the boiling point difference of system-forming constituents. Therefore, phase behavior data of a system of a large boiling point difference are to be experimentally measured for thorough understanding of the thermodynamic characteristics of such system. In this work, isobaric vapor-liquid equilibrium of a mixture consisting of toluene and cresol, which shows a large boiling point difference of nearly 100 ℃ and is consequently expected to be considerably nonideal, was measured by using a recirculating equilibrium cell at various subatmospheric pressures ranging from 10 kPa to 60 kPa. The measured VLE data were correlated with NRTL and UNIQUAC models in a satisfactory manner and the accompanying thermodynamic consistency test represented soundness of the measurements. In addition, the excess molar volume of the mixture was also measured with a vibrating densitometer and correlated with a Redlich-Kister polynomial. A negative excess volume prevailed over the whole concentration range, which indicates a favorable attraction between toluene and cresol isomers and results in an extensive miscibility.
[References]
  1. Wagner FS, Grayson M, Kirk Othmer Encyclopedia of Chemical Technology, 3rd ed., Wiley, New York, 1978
  2. Park SJ, Doh MS, HWAHAK KONGHAK, 35(1), 46, 1997
  3. Smith JM, Van Ness HC, Introduction to Chemical Engineering Thermodynamics, 5th ed., McGraw-Hill Book Co, 1996
  4. Ramsauer B, Neueder R, Kunz W, Fluid Phase Equilib., 272(1-2), 84, 2008
  5. Klauck M, Grenner A, Taubert K, Martin A, Meinhardt R, Schmelzer J, Ind. Eng. Chem. Res., 47(15), 5119, 2008
  6. Rho SG, Kang CH, J. Korean Ind. Eng. Chem., 8(6), 893, 1997
  7. Gnanakumari P, Venkatesu P, Hsieh CT, Rao MVP, Lee MJ, Lin HM, J. Chem. Thermodyn., 41(2), 184, 2009
  8. Reid RC, Prausnitz JM, Poling BE, The Properties of Gases and Liquids, 4th ed., McGraw-Hill, New York, NY, 1987
  9. Ovejero G, Romero MD, Diez E, Lopez T, Diaz I, J. Chem. Thermodyn., 40(11), 1617, 2008
  10. Ashour I, Abu-Eishah SI, J. Chem. Eng. Data, 54, 1717, 2006
  11. Darwish NA, Alkhateib AA, Fluid Phase Equilib., 132(1-2), 215, 1997
  12. Redlich O, Kister AT, Ind. Eng. Chem., 40, 345, 1948
  13. Park SJ, Han KJ, Choi YY, J. Ind. Eng. Chem., 15, 791, 2004