Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.47, No.6, 705-709, 2009
분진폭발의 입자거동을 고려한 화염전파속도의 예측
Prediction of Flame Propagation Velocity based on the Behavior of Dust Particles
본 연구에서는 석송자 분진입자의 거동에 관한 실험적 연구결과를 바탕으로 한 분진화염 전파모델을 제시하였다. 화염전파속도는 분진농도와 함께 증가하여 석송자의 화학양론농도보다 높은 170 g/m3에서 최대로 나타났으며 500 g/m3까지 완만하게 감소 경향을 나타낸다. 농도 47~200 g/m3에 있어서, 분진입자속도는 화염전파속도에 비례하여 증가한다. 또한, 연소속도와 입자속도의 합이 화염전파속도에 근사한 값을 나타내고 있어, 분진농도에 따른 화염전파속도를 계산에 의해 추정이 가능하였으며, 입자의 거동이 분진의 화염전파속도를 이해하는데 유용하다는 것을 알 수 있었다.
Based on experimental study of lycopodium dust particles' behavior, we suggest the flame propagation model through dust clouds. With dust concentration, flame velocity reaches a maximum value at 170 g/m3 to exceed the stoichometric concentration for lycopodium-air mixture combustion and decreases slightly in the richer side of 500 g/m3. At 47~200 g/m3, mean velocity of particle increases in proportion to flame velocity. As the sum of burning rate and particle velocity is approximate in flame velocity, the flame propagation velocity with lycopodium dust concentration can be estimated by the calculation and it was found that behavior of particles is useful for better understanding of dust flame propagation velocity.
[References]
  1. Eckhoff RK, Dust explosions in the process industries-3rd ed., Gulf professional publishing, 2003
  2. Bhaduri D, Bandyopadhyay S, Combust. Flame, 17, 15, 1971
  3. Essenhigh RH, Combustion and Flame Propagation in Coal Systems : A Review, 16th Symposium(International) on Combustion, The Combustion Institute, Pittsburgh, 353-374, 1976
  4. Horton MD, Goodson FP, Smoot LD, Combust. Flame, 28, 187, 1977
  5. Palmer KN, Dust explosion and fire, Chapman and Hall Ltd., 1983
  6. Smoot LD, Horton MD, Goodson FP, Williams GA, Hecker WC, Measurement and Predicting of Laminar Flame Propagation in Methane/Coal/Air Suppressant Systems, Paper 74-1112, AIAA 10th Propulsion Conference, San Diego, California, 1974
  7. Han OS, Yashima M, Matsuda T, Matsui H, Miyake A, Ogawa T, J. Loss Prev. in the Process Ind., 13, 449, 2000
  8. Han OS, Yashima M, Matsuda T, Matsui H, Miyake A, Ogawa T, J. Loss Prev. Process Ind., 14(3), 153, 2001
  9. Han OS, Korean Chem. Eng. Res., 47(5), 572, 2009
  10. Hertzberg M, Cashdollar KL, Zlochower IA, Flammability limit measurements for dusts and gases, 21th International Symposium on combustion, The Combustion Institute, Pittsburg, 1987
  11. Sun J, Dobashi R, Hirano T, Structure of flame propagation through metal particle clouds and behavior of particles, 27th International Symposium on combustion, The Combustion Institute, Pittsburg, 1998
  12. Kaesche-Krischer B, Untersuchungen an vorgemischten, laminar Staub/Luft-Flammen, Stab 19, 200-203, 1959
  13. Kobayashi H, Ono N, Okuyama Y, Niioka T, Flame propagation Experiment of PMMA particle cloud in a microgravity environment, 25th Symposium(International) on Combustion, The Combustion Institute, Pittsburg, 1693-1699, 1994