Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.47, No.6, 700-704, 2009
Fischer-Tropsch 합성용 SCR(Steam Carbon Dioxide Reforming) 공정 최적화 연구
A Simulation Study on SCR(Steam Carbon Dioxide Reforming) Process Optimization for Fischer-Tropsch Synthesis
GTL(gas-to-liquid) 합성유 제조용 SCR(steam carbon dioxide reforming) 공정의 시뮬레이션 연구를 수행하였다. 온도 및 CH4/steam/CO2 반응물 비와 같은 변수를 바꾸어 가면서 SCR 공정을 위한 최적 운전조건을 살펴보았다. 공정 시뮬레이션을 위해 Aspen Plus를 사용하였다. 또한 정상상태 가정하의 열역학적 물성치 계산을 위해 Aspen Plus의 RSK (Redlich-Kwong-Soave) 상태방정식을 사용하였다. FT 공정을 위한H2/CO 비, CH4 전환율, CO2 전환율을 살펴봄으로써 최적의 온도와 최적의 반응물 비를 결정하였다. 시뮬레이션 결과, SCR reformer 촉매층 출구 최적온도는 상압에서 850 ℃ 였으며, 이 온도에서 CH4 전환율은 99%, CO2 전환율은 49%로 계산되었고, CH4/steam/CO2 최적 반응물 비율은 1.0/1.6/0.7로 나타났다.
A simulation study on SCR(steam carbon dioxide reforming) in gas-to-liquid(natural gas to Fischer-Tropsch synthetic fuel) process was carried out in order to find optimum reaction conditions for SCR experiment. Optimum operating conditions for SCR process were determined by changing reaction variables such as temperature and CH4/steam/CO2 feed ratio. Simulation was carried out by Aspen Plus. During the simulation, overall process was assumed to proceed under steady-state conditions. It was also assumed that physical properties of reaction medium were governed by RKS(Redlich-Kwong-Soave) equation. Optimum simulation variables such as temperature and feed ratio were determined by considering H2/CO ratio for FTS(Fischer-Tropsch synthesis), CH4 conversion, and CO2 conversion. Simulation results showed that optimum reaction temperature and CH4/steam/CO2 feed ratio in SCR process were 850 ℃ and 1.0/1.6/0.7, respectively. Under optimum temperature of 850 oC, CH4 conversion and CO2 conversion were found to be 99% and 49%, respectively.
[References]
  1. Schanke D, Lian P, Eri S, Rytter E, Sannaes BH, Kinnari KJ, Stud. Surf. Sci. Catal., 136, 239, 2001
  2. Rostrup-Nielsen JR, Catal. Today, 18, 305, 1993
  3. Knottenbelt C, Catal. Today, 71(3-4), 437, 2002
  4. Rostrup-Nielsen JR, Catal. Today, 71(3-4), 243, 2002
  5. Aasberg-Petersen K, Hansen JHB, Christensen TS, Dybkjaer I, Christensen PS, Nielsen CS, Madsen SELW, Rostrup-Nielsen JR, Appl. Catal. A: Gen., 221(1-2), 379, 2001
  6. Requies J, Cabrero MA, Barrio VL, Cambra JF, Guemez MB, Arias PL, La Parola V, Pena MA, Fierro JLG, Catal. Today, 116(3), 304, 2006
  7. Wakasuki T, Morita Y, Okado H, Inaba K, Hirayama H, Shimura M, Kawazuishi K, Iwamoto O, Suzuki T, Stud. Surf. Sci. Catal., 136, 117, 2001
  8. Dry ME, Catal. Today, 71(3-4), 227, 2002
  9. Wilhelm DJ, Simbeck DR, Karp AD, Dickenson RL, Fuel Process. Technol., 71(1-3), 139, 2001
  10. Soave G, Chem. Eng. Sci., 27, 1197, 1972
  11. Rostrup-Nielsen JR, Stud. Surf. Sci. Catal., 36, 73, 1988
  12. Guo J, Lou H, Zheng X, Carbon, 45, 1314, 2007