Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.47, No.2, 237-242, 2009
다양한 식물성오일로부터 생산된 바이오디젤의 혼합에 따른 연료특성 분석
Determination of Fuel Properties for Blended Biodiesel from Various Vegetable Oils
화석연료의 고갈과 원유가격 폭등으로 인해 이를 대체할 수 있는 다양한 연료의 개발이 이루어지고 있다. 동물성 지방이나 식물성 기름의 주성분인 트리글리세라이드를 메탄올과 반응시켜 생산된 바이오디젤은 기존의 석유디젤을 대체 할 수 있는 친환경적인 연료로 알려져 있다. 본 연구에서는 국내에서 유통중인 경유에 6종류의 원료별 바이오디젤을 일정 비율로 혼합한 뒤, 다양한 연료특성을 분석하였다. 바이오디젤의 농도가 높아질수록 밀도, 동점도, 인화점이 상승하였고, 저온특성은 악화되는 것을 확인하였다. 또한 경유의 중요한 연료특성인 세탄가를 IQT를 이용해 측정한 결과, 바이오디젤의 혼합비율이 높아질수록, 유도세탄가가 높게 측정되었으며, 특히 팜유로부터 생산된 바이오디젤의 경우, 71.26의 높은 유도세탄가가 측정되었다.
Various type of alternative fuel have been developed due to exhaustion of fossil fuel reserves and high oil price. Biodiesel is produced from the reaction of triglyceride, which is main component of animal fat and vegetable oil, and methanol by methanolysis as it is known for eco- friendly fuel for alternative petrodiesel. In this work, it was analyzed for the characteristics of the blended biodiesel with domestic petrodiesel according to blending ratio. Density, kinematic viscosity and flash point were increased with increasing the content of biodiesel. But the characteristic of blended biodiesel fuel were changed to aggravate in low temperature. Also, the derived cetane number(DCN) from IQT was increased by added biodiesel. Especially, the DCN of biodiesel from palm oil showed 71.26.
[References]
  1. Antoni D, Zverlov VV, Schwarz WH, Appl. Microbiol. Biotechnol., 77(1), 23, 2007
  2. Campbell CJ, Laherrere JH, Sci. Am., 278, 77, 1998
  3. http://www.geni.org/globalenergy/policy/renewableenergy/index. shtml.
  4. Lotero E, Liu YJ, Lopez DE, Suwannakarn K, Bruce DA, Goodwin JG, Ind. Eng. Chem. Res., 44(14), 5353, 2005
  5. Hong YK, Hong WH, Korean Chem. Eng. Res., 45(5), 424, 2007
  6. Lim YK, Shin SC, Yim ES, Song HO, J. Korean Ind. Eng. Chem., 17, 137, 2008
  7. Balat M, Balat H, Oz C, Prog. Energy and Combust. Sci., 34, 551, 2008
  8. Yim ES, Min K, Jeon C, Lee D, Kim JR, Kim SS, Jang EJ, Park CK, Jung CS, Kim JK, Lim YK, Shin SC, New & Renewable Energy, 3, 98, 2007
  9. Cohron M, Zhao H, Liu H, Pan W, Energy & Fuels, 22, 1720, 2008
  10. Lim YK, Shin SC, Kim JR, Yim ES, Song HO, Kim DK, J. Korean Ind. Eng. Chem., 19(6), 617, 2008
  11. Bajpai D, Tyagi VK, J. Oleo. Sci., 55, 487, 2006
  12. EAI and U.S. Department of Energy, “Fuel and Energy Source Codes and Emission Coefficients,”, 2002
  13. http://www.shell.com/home/content/shellgasandpower-en/
  14. Lee HS, Choi JH, Shin YH, Lim Y, Han C, Kim H, Lee YW, Korean Chem. Eng. Res., 46(4), 747, 2008
  15. Salis A, Pinna M, Monduzzi M, Solinas V, J. Biotechnol., 119, 291, 2005
  16. Choi JD, Kim DK, Park JY, Rhee YW, Lee JS, Korean Chem. Eng. Res., 46(1), 194, 2008
  17. Moser BR, Energy & Fuels, 22, 4301, 2008
  18. Business act for quality standard inspection method and inspection fee for petroleum product, Ministry of Commerce, Industry and Energy, 2006-42.