Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.47, No.2, 203-207, 2009
MEMS 접착제용 에폭시 복합재의 아미노 변성 실록산 첨가에 의한 효과
Effect of Amino Modified Siloxane on the Properties of Epoxy Composites for MEMS Adhesives
소형 반도체 접착에 쓰이는 비전도성 고분자 접착제에서 발생하는 문제점으로는 접착소재와 칩 또는 기판 간의 열팽창계수 차이에 의한 박리, 크래킹 및 접착력 부족 등이 있다. 이러한 결점의 보완을 위하여 무기입자를 첨가한 고분자 복합소재를 통해 접착제의 열팽창계수를 낮추거나, 접착소재에 유연성 첨가제를 첨가하는 방법 등이 사용되고 있다. 본 연구에서는 양 말단에 아민기를 가지는 아미노 변성 실록산(AMS)의 함량을 1, 3, 5 phr로 변화시켜 실록산/에폭시 복합재를 제조하였다. 그 결과, 실록산의 첨가는 유리전이 온도를 134 ℃에서 122 ℃까지, 모듈러스를 2,425 MPa에서 2,143 MPa까지 감소시켰으며, 열팽창계수는 67 ppm/에서 71 ppm/까지 상승시켰다. 실록산은 유연성 부여에는 효과를 나타냈지만, 유리전이온도의 감소를 가져오는 것을 확인하였다.
In the NCAs(non-conductive adhesive) for adhesion of Micro Electro Mechanical System(MEMS), there are some problems such as delamination and cracking, because of the differences of CTE(coefficients of thermal expansion) between NCAs and substrates. Addition of inorganic particle or flexibilizer have been performed to solve those problems. In this study, to improve the flexibility of epoxy adhesive, epoxy/siloxane composites were prepared by adding 1, 3, or 5 phr of amino modified siloxane(AMS). Glass transition temperatures(Tg), moduli and CTE of those composites were measured to confirm effects of siloxane on thermal/mechanical properties of siloxane/epoxy-composites. Tg of AMS/epoxy-composites decreased from 134℃ to 122℃ with increasing AMS contents and moduli decreased from 2,425 MPa to 2,143 MPa with increasing AMS contents. But CTE of AMS/epoxy-composites increased from 67 ppm/℃ to 71 ppm/℃ with increasing AMS contents. In short, the addition of siloxane is effective for enhancing the flexibility of epoxy but leads to the decrease of Tg.
[References]
  1. Lee JW, Yoo JY, “Die Attach Adhesive Films for Semiconductor Chip Stacking Process,” 2006 TCI Report, 1-60, 2006
  2. Kim JM, Journal of KWJS, 25, 133, 2007
  3. Li Y, Wong CP, Materials Science and Engineering R: Reports, 51, 1, 2006
  4. Matejka L, Dukh O, Kolarik J, Polymer, 41(4), 1449, 2000
  5. Haas KH, Wolter H, Curr. Opin. Solid St. M., 4, 571, 1999
  6. Salahuddin N, Moet A, Hiltner A, Baer E, Eur. Polym. J., 38, 1477, 2002
  7. Matejka L, Dusek K, Kriz J, Lednicky F, Polymer, 40, 171, 1998
  8. Min BK, Polym.(Korea), 12(7), 599, 1988
  9. Wang MW, Wu H, Lin MS, Journal of Polymer Research, 15, 1, 2008
  10. Gong HJ, Kim W, Elastomer, 43, 39, 2008
  11. Nagendiran S, Premkumar S, Alagar M, J. Appl. Polym. Sci., 106(2), 1263, 2007
  12. Yeh JM, Huang HY, Chen CL, Su WF, Yu YH, Surface & Coatings Technology, 200, 2753, 2006
  13. Morita Y, Tajima S, Suzuki H, Sugino H, J. Appl. Polym. Sci., 100(3), 2010, 2006
  14. Marimuthu S, Madurai SL, Boreddy SRR, Macromol. Chem. Phys., 206, 2501, 2005
  15. Park SJ, Jin FL, Park JH, Kim KS, Materials Science and Engineering: A, 399, 377, 2005
  16. Ahmad S, Gupta AP, Sharmin E, Alam M, Pandey SK, Progress in Organic Coatings, 54, 248, 2005
  17. Li HT, Lin MS, Chuang HR, Wang MW, Journal of Polymer Research, 12, 385, 2005
  18. Lee H, Fasulo PD, Rodgers WR, Paul DR, Polymer, 47(10), 3528, 2006