Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.47, No.2, 195-202, 2009
2탑 유동층 시스템에서 선택적 고체순환을 위한 고체분리기 개발
Development of Solid Separator for Selective Solid Circulation in Two-interconnected Fluidized Beds System
선택적 고체순환이 가능한 2탑 유동층 공정 개발을 위한 기초연구로 금속 망이 장착된 입자크기분리 시스템에 의해 입자크기 차이를 이용하여 고운입자와 굵은입자를 분리할 수 있는 고체분리기를 개발하였으며 고체분리속도에 미치는 유속, 고체분리기의 설치높이 및 분리면적의 영향을 측정 및 고찰하였다. 고체분리기에 의한 고체분리속도는 기체유속, 고체분리기의 설치높이, 분리면적이 증가함에 따라 증가하였다. 기체유속 및 고체분리기 설치높이 증가에 따른 고체분리속도의 변화경향은 기포크기의 변화경향과 유사하였다. 본 연구에서 개발한 고체분리기를 이용하여 굵은입자(212~300 μm)와 고운입자(63~106 μm)의 분리가 가능하였으며 고체분리속도는 4.4~127 g/min의 범위를 나타내었다. 개발된 고체분리기를 회수증진 수성가스변환 공정에 적용하여 선택적 고체순환이 가능한 2탑 유동층 공정구성을 제안하였다.
As a basic research of developing two-interconnected fluidized beds system for selective solid circulation, a solid separator was developed to separate fine and coarse particles by means of particle size difference with particle size separation system equipped with metal screen. The effects of gas velocity, height of solid separator, and separation area on the solid separation rate were investigated as well. The solid separation rate increased as the gas velocity, height of solid separator, and separation area increased. As the gas velocity and height of the solid separator increased, the variation of the solid separation rate was consistent with that of bubble size. Consequently, coarse(212~300 μm) and fine(63~106 μm) particles were separated using the solid separator and the solid separation rate was ranged from 4.4 to 127 g/min. We also proposed two interconnenced fluidized beds system for sorption enhanced water-gas shift process equipped with the developed solid separator.
[References]
  1. Kunii D, Levenspiel O, Fluidization engineering, 1st Ed., John Wiley & Sons, Inc., New York, 1969
  2. Yi CK, Luyben WL, Ind. Eng. Chem. Res., 38(11), 4290, 1999
  3. Yi CK, Jo SH, Seo Y, Lee JB, Ryu CK, Int. J. of Greenhouse Gas Control, 1, 31, 2007
  4. Ryu HJ, Jin GT, Energy Engg. J., 12, 289, 2003
  5. Ryu HJ, Jin GT, Korean J. Chem. Eng., 24(3), 527, 2007
  6. Ryu HJ, Trans. of the Korean Hydrogen and New Energy Society, 18, 382, 2007
  7. Ryu HJ, Yi CK, Shun D, Jin GT, Theories and Applications of Chem. Eng., KIChE, 14, 294, 2008
  8. Ryu HJ, Park YC, Jo SH, Park MH, Korean J. Chem. Eng., 25(5), 1178, 2008
  9. Ryu HJ, Park JH, Kim HK, Park MH, Korean Chem. Eng. Res., 46(6), 1057, 2008
  10. Kunii D, Levenspiel O, Fluidization engineering, 2nd Ed., Butterworth-Heinemann, MA, 128, 1991