Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.47, No.2, 185-189, 2009
교반셀에서 측정한 아민첨가 암모니아수 흡수제의 이산화탄소 흡수 반응 속도 측정
Absorption Rate of Carbon Dioxide into Blended Ammonia Solution with Amine Additives in a Stirred Cell Reactor
10 wt% 암모니아수 흡수제에서 이산화탄소 흡수속도를 교반셀 반응기를 이용하여 293~337 K 범위에서 측정하였다. 암모니아 흡수제와 이산화탄소의 반응속도를 아레니우스 식으로 나타내었으며 활성화에너지는 50.42 kJ/mol였다. 2-Amino-2-methyl-1-propanol(AMP), 2-amino-2-methyl-1,3-propandiol(AMPD), 2-amino-2-ethyl-1,3-propandiol(AEPD)의 입체장애아민 첨가제가 1 wt% 함유된 흡수제에서의 이산화탄소 흡수속도를 측정하였다. 아민 첨가제들은 흡수속도에 영향을 주었으며 1 wt%의 AMP를 첨가한 경우 반응속도 상수는 약 53% 증가하였다.
Absorption rate of carbon dioxide into aqueous ammonia absorbent(10 wt%) was measured in the temperature range from 293 K to 337 K using a stirred-cell reactor. The reaction rate constant was correlated with the Arrehnius equation and the activation energy was 50.42 kJ/mol. CO2 absorption rate into modified ammonia absorbent was also investigated. For the modified ammonia absorbent, 1 wt% sterically hindered amines of 2-amino-2-methyl-1-propanol(AMP), 2-amino-2-methyl-1,3-propandiol(AMPD) and 2-amino-2-ethyl-1,3-propandiol(AEPD) were used as additives. The CO2 absorption rate increased by adding 1 wt% of the amine additive, in the case of AMP additive, the absorption rate enhanced by about 53%.
[References]
  1. Bai HL, Yeh AC, Ind. Eng. Chem. Res., 36(6), 2490, 1997
  2. Li XN, Hagaman E, Tsouris C, Lee JW, Energy Fuels, 17(1), 69, 2003
  3. Yeh AC, Bai H, The Science of the Total Environment, 228, 121, 1999
  4. Diao YF, Zheng XY, He BS, Chen CH, Xu XC, Energy Conv. Manag., 45(13-14), 2283, 2004
  5. Meng L, Burris S, Bui H, Pan WP, Anal. Chem., 77, 5947, 2005
  6. You JK, Park HS, Hong WH, Park J, Kim JN, Korean Chem. Eng. Res., 45(3), 258, 2007
  7. Andrew SPS, Chem. Eng. Sci., 3, 279, 1954
  8. Kucka L, Richter J, Kenig EY, Gorak A, Sep. Purif. Technol., 31(2), 163, 2003
  9. You JK, Park HS, Yang SH, Hong WH, Kang JK, Yi KB, Kim JN, J. Phys. Chem. B, 112, 4323, 2008
  10. Middleman S, “An Introduction to Mass and Heat Transfer,” Principles of Analysis and Design, Wiley, 1997
  11. Krevelen DWV, Hoftijzer PJ, Huntjens FJ, Rec. Trav. Chim. Pays-bas, 68, 191, 1949
  12. Danckwerts PV, Gas-liquid Reactions; McGraw-Hill, New York, 1970
  13. Pinsent BRW, Pearson L, Roughton FWJ, Trans. Faraday. Soc., 52, 1512, 1956
  14. Hikita H, Asai S, Ishikawa H, Honda M, Chem. Eng. J., 13, 7, 1977
  15. Pani F, Gaunand A, Cadours R, Bouallou C, Richon D, J. Chem. Eng. Data, 42(2), 353, 1997
  16. Xu S, Wang YW, Otto FD, Mather AE, Chem. Eng. Sci., 51(6), 841, 1996