Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.47, No.1, 89-95, 2009
암모니아 재순환 침출공정을 이용한 볏짚의 전처리
Pretreatment of Rice Straw by Using Ammonia Recycled Percolation Process
볏짚은 섬유소와 헤미셀루로우스의 함유량이 높아, 바이오에탄올 생산을 위한 잠재적 가치가 매우 높은 목질계 바이오매스 원료이다. 본 연구에서는 볏짚으로부터 바이오 에탄올 생산하기 위한 전처리 공정으로써 암모니아 재순환 침출 공정을 적용하였다. 특히 생성된 고형물의 조성과 효소 가수분해도에 전처리 공정의 온도와 반응시간 그리고 암모니아의 농도가 미치는 영향을 조사하였다. 실험을 행한 전처리 공정의 온도, 반응시간, 그리고 암모니아의 범위는 차례로 150~190 ℃, 10~90 min 그리고 0~20 wt%이다. 전처리 공정을 통하여 약 84%의 리그닌과 20~80%의 헤미셀루로우스가 용해되었다. 또, 15 wt%의 암모니아 수용액을 이용하여 170 ℃에서 90 min 동안 전처리한 고형 잔재물의 경우 15 FPU/g of glucan의 셀루라제 효소를 첨가하여 약 90%의 효소 가수분해도를 얻을 수 있었다. 셀루라제와 자일란 나아제를 함께 사용하면 가수분해도가 현저하게 향상되였으며, 이는 헤미셀루로우스가 가수분해 과정에서 중요한 방해제 역할을 하고 있음을 보여주는 것이다. 150 ℃에서 20 min 동안 15%의 암모니아수로 전처리된 시료를 이용한 동시당화발효 실험과 동시당화공동발효 실험에서는 각각 13.8 g/L(초기 glucan을 기준으로 81%)와 15.2 g/L(초기 glucan과 xylan의 합을 기준으로 89%)의 에탄올이 생성되었다.
Because of high contents of cellulose (~37 wt%) and hemicellulose (~17%), rice straw seems to be a potential lignocellulosic biomass for production of bioethanol. In this study, Ammonia Recycled Percolation (ARP) pretreatment of rice straw was extensively investigated. In particular, the experimental study included the effects of temperature, reaction time and concentration of ammonia on compositions and enzymatic digestibility of the resulting solid residues; the ranges of pretreatment conditions were, in turn, 150~190 ℃, 10~90 min and 0~20 wt%. Through ARP pretreatment, the lignin content was reduced by as high as ~84% while 20~80% of the hemicellulose was also solubilized. The solid residue resulted from the pretreatment with 15 wt% aqueous ammonia solution at 170 ℃ for 90 mim showed as high as ~90% of digestibility with 15FPU/g of glucan enzyme loading. Supplement of xylanese to cellulase led to a notable enhancement of digestibility, indicating a discernable inhibitory role of hemicellulose. Simultaneous Saccharification and Fermentation (SSF) and Simultaneous Saccharification and Co-Fermentation (SSCF) were performed to obtain ethanol productions of 13.8 g/L (corresponding to 81% yield) and 15 g/L (corresponding to 89% yield), respectively.
[References]
  1. Szczodrak J, Fiedurek J, Biomass Bioenerg., 10(5-6), 367, 1996
  2. Hamelinck CN, van Hooijdonk G, Faaij APC, Biomass Bioenerg., 28(4), 384, 2005
  3. Wyman CE, Dale BE, Elander RT, Holtzapple M, Ladisch MR, Lee YY, Bioresour. Technol., 96(18), 2026, 2005
  4. Dale BE, Henk LL, Shiang M, Dev. Ind. Microbiol., 26, 223, 1984
  5. Wright JD, Chem. Eng. Prog., 84, 62, 1998
  6. Sanchez OJ, Cardona CA, Biores. Technol., 99, 5270, 2008
  7. Kim TH, Kim JS, Sunwoo C, Lee YY, Bioresour. Technol., 90(1), 39, 2003
  8. Zhu L, O’Dwyer JP, Chang VS, Granda CB, Holtzapple MT, Biores. Technol., 99, 3817, 2008
  9. Sun Y, Cheng JY, Bioresour. Technol., 83(1), 1, 2002
  10. Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M, Bioresour. Technol., 96(6), 673, 2005
  11. Oh KK, Hong SI, Lee YY, HWAHAK KONGHAK, 36(5), 784, 1998
  12. Ohgren K, Bura R, Saddler J, Zacchi G, Bioresour. Technol., 98(13), 2503, 2007
  13. Yoon HH, Wu ZW, Lee YY, Appl. Biochem. Biotechnol., 51, 5, 1995
  14. Iyer PV, Wu ZW, Kim SB, Lee YY, Appl. Biochem. Biotechnol., 57, 121, 1996
  15. Kim JS, Lee YY, Park SC, Appl. Biochem. Biotechnol., 84, 129, 2000
  16. Grohmann K, Mitchell DJ, Himmel M, Biotechnol. Bioeng. Symp., 17, 135, 1986
  17. Karimi K, Emtiazi G, Taherzadeh MJ, Enzyme and Microbial. technol., 40, 30, 2006
  18. Genco JM, Miller W, Zou H, Cole BJW, Liukkonen A, Tappai press, 1, 427, 1997
  19. Lora JH, Wayman M, Tappai, 61, 47, 1978
  20. Karlsson O, Nordic Pulp & Paper Research J., 12, 203, 1997
  21. Dien BS, Hespell RB, Wyckoff HA, Bothast RJ, Enzyme Microb. Technol., 23(6), 366, 1998