Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.47, No.1, 11-16, 2009
단일벽 탄소나노튜브 상에 석출된 산화루테늄과 루테늄-코발트 혼합산화물의 수퍼커패시터 특성
Supercapacitive Properties of RuO2 and Ru-Co Mixed Oxide Deposited on Single-Walled Carbon Nanotube
단일벽 탄소나노튜브의 표면 위에 동력학적 전위법으로 산화루테늄(RuO2)의 석출 및 루테늄-코발트 혼합산화물(Ru-Co mixed oxide)의 공석출에 의해 산화환원 수퍼커페시터용 복합전극을 제조하였다. 루테늄 성분이 13.13 wt%, 코발트 성분이 2.89 wt%가 석출된 Ru-Co 혼합산화물 전극은 낮은 전위 스캔속도(10 mV s-1)에서는 RuO2 전극과 유사한 비용량(~620 F g-1)을 나타내지만, 높은 스캔속도(500 mV s-1)에서는 RuO2 전극보다 큰 비용량을 보인다. 높은 스캔 속도에서 Ru-Co 혼합산화물 전극이 비용량의 증가를 나타내는 것은 Ru 성분을 통한 전기전도성을 Co 성분이 구조적으로 지지해주기 때문이다.
Composite electrodes for redox supercapacitor were prepared potentiodynamically by the deposition of RuO2 and the co-deposition of Ru-Co mixed oxide on the surface of single-walled carbon nanotube. Electrode of Ru-Co mixed oxide, in which Ru(13.13 wt%) and Co(2.89 wt%) were deposited on the carbon nanotube, exhibited a similar specific capacitance(~620 F g-1) with RuO2 electrode at a low potential scan rate(10 mV s-1), but showed a superior one (570 F g-1) at a high scan rate(500 mV s-1) than that of RuO2(475 F g-1). Such increase in the specific capacitance at high scan rate by the co-deposition of Ru and Co species was due to the structural support of Co species to provide the electronic conduction through Ru species.
[References]
  1. Conway BE, Electrochemical Capacitors: Scientific Fundamentals and Technological Applications, Kluwer, New York (1999)
  2. Rudge A, Davey J, Raistrick I, Gottesfeld S, Ferraris JP, J. Power Sources, 47, 89, 1994
  3. Chen GZ, Shaffer MSP, Coleby D, Dixon G, Zhou WZ, Fray DJ, Windle AH, Adv. Mater., 12(7), 522, 2000
  4. Nam KW, Yoon WS, Kim KB, Electrochim. Acta, 47(19), 3201, 2002
  5. Prasad KR, Miura N, Appl. Phys. Lett., 85, 4199, 2004
  6. Sivakkumar SR, Ko JM, Kim DY, Kim BC, Wallace GG, Electrochim. Acta, 52(25), 7377, 2007
  7. Song RY, Park JH, Sivakkumar SR, Kim SH, Ko JM, Park DY, Jo SM, Kim DY, J. Power Sources, 166(1), 297, 2007
  8. An KH, Kim WS, Park YS, Moon JM, Bae DJ, Lim SC, Lee YS, Lee YH, Adv. Funct. Mater., 11(5), 387, 2001
  9. Hughes M, Shaffer MSP, Renouf AC, Singh C, Chen GZ, Fray J, Windle AH, Adv. Mater., 14(5), 382, 2002
  10. Chang KH, Hu CC, Appl. Phys. Lett., 88, 193102, 2006
  11. Lin C, Ritter JA, Popov BN, J. Electrochem. Soc., 146(9), 3155, 1999
  12. Hu CC, Chen WC, Chang KH, J. Electrochem. Soc., 151(2), A281, 2004
  13. Kim H, Popov BN, J. Power Sources, 104(1), 52, 2002
  14. Ramani M, Haran BS, White RE, Popov BN, Arsov L, J. Power Sources, 93(1-2), 209, 2001
  15. Park JH, Park OO, J. Power Sources, 109(1), 121, 2002
  16. Lee JY, An KH, Heo JK, Lee YH, J. Phys. Chem. B, 107(34), 8812, 2003
  17. Zhou C, Kumar S, Doyle CD, Tour JM, Chem. Mater., 17, 1997, 2005
  18. Gupta V, Miura N, Electrochim. Acta, 52(4), 1721, 2006
  19. Qin X, Durbach S, Wu GT, Carbon, 42, 451, 2004
  20. Ye JS, Cui HF, Liu X, Lim TM, Zhang WD, Sheu FS, Small, 5, 560, 2005
  21. Hu CC, Chang KH, Lin MC, Wu YT, Nano Lett., 6, 2690, 2006
  22. Kim IH, Kim JH, Lee YH, Kim KB, J. Electrochem. Soc., 152(11), A2170, 2005
  23. Lee JK, Pathan HM, Jung KD, Joo OS, J. Power Sources, 159(2), 1527, 2006
  24. Sugimoto W, Iwata H, Yokoshima K, Murakami Y, Takasu Y, J. Phys. Chem. B, 109, 7330, 2005