Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.47, No.1, 1-10, 2009
3차원 집적회로 반도체 칩 기술에 대한 경향과 전망
Trend and Prospect for 3Dimensional Integrated-Circuit Semiconductor Chip
작은 크기의 고기능성 휴대용 전자기기 수요의 급증에 따라 기존에 사용되던 수평구조의 2차원 칩의 크기를 줄이는것은, 전기 배선의 신호지연 증가로 한계에 도달했다. 이러한 문제를 해결하기 위해 칩들을 수직으로 적층한 뒤, 수평 구조의 긴 신호배선을 짧은 수직 배선으로 만들어 신호지연을 최소화하는 3차원 칩 적층기술이 새롭게 제안되었다. 3차원 칩의 개발을 위해서는 기존에 사용되던 반도체 공정들뿐 아니라 실리콘 관통 전극 기술, 웨이퍼 박화 기술, 웨이퍼 정렬 및 본딩 기술 등의 새로운 공정들이 개발되어야 하며 위 기술들의 표준 공정을 개발하기 위한 노력이 현재 활발히 진행되고 있다. 현재까지 4~8개의 단일칩을 수직으로 적층한 DRAM/NAND 칩, 및 메모리 칩과 CPU 칩을 한꺼번에 적층한 구조의 성공적인 개발 결과가 보고되었다. 본 총설에서는 이러한 3차원 칩 적층의 기본 원리와 구조, 적층에 필요한 중요 기술들에 대한 소개, 개발 현황 및 앞으로 나아갈 방향에 대해 논의하고자 한다.
As a demand for the portable device requiring smaller size and better performance is in hike, reducing the size of conventionally used planar 2 dimensional chip cannot be a solution for the enhancement of the semiconductor chip technology due to an increase in RC delay among interconnects. To address this problem, a new technology - “3 dimensional (3D) IC chip stack” - has been emerging. For the integration of the technology, several new key unit processes (e.g., silicon through via, wafer thinning and wafer alignment and bonding) should be developed and much effort is being made to achieve the goal. As a result of such efforts, 4 and 8 chip-stacked DRAM and NAND structures and a system stacking CPU and memory chips vertically were successfully developed. In this article, basic theory, configurations and key unit processes for the 3D IC chip integration, and a current tendency of the technology are explained. Future opportunities and directions are also discussed.
[References]
  1. Moore GE, IEEE Press, 11, 1975
  2. Davis JA, Venkatesan R, Kaloyeros A, Beylansky M, Souri SJ, Banerjee K, Saraswat KC, Rahman A, Reif R, Meindl JD, Proc. IEEE, 89, 305, 2001
  3. Meindl JD, Computing in Science & Technology, 5, 20, 2003
  4. Frank DJ, Dennard RH, Nowak E, Solomon PM, Taur Y, Wong HSP, Proc. IEEE, 89, 259, 2001
  5. Meindl JD, Davis JA, IEEE J. Solid State Circuits, 35, 1515, 2000
  6. Yamazaki K, Itoh Y, Wada A, Morimoto K, Tomita Y, IEEE Press, 599, 1990
  7. Xue L, Liu CC, Kim HS, Kim S, Tiwary S, IEEE Trans. On Electron. Device, 50, 601, 2003
  8. Davis JA, De VK, Meindl JD, IEEE Trans. On Electron. Device, 45, 590, 1998
  9. Rahman A, Reif R, Proc. Of the Interconnect Technology Conf, 157, 2001
  10. Meindl JD, Computing in Science & Technology, 5, 20, 2003
  11. Gutmann RJ, Steigerwald JM, You L, Price DT, Neirynck J, Duquette DJ, Murarka SP, Thin Solid Films, 270(1-2), 596, 1995
  12. Steigerbald JM, Murarka SP, Gutmann RJ, Chemical-Mechanical Polishing of Microelectronics Materials, John Wiley & Sons Inc., New York(1997)
  13. Murarka SP, Verner IV, Gutmann RJ, Copper Fundamentals for Microelectronic Applications, John Wiley & Sons Inc., New York(1997)
  14. Borst CL, Thakurta DG, Gill WN, Gutmann RJ, J. Electrochem. Soc., 146(11), 4309, 1999
  15. Hau-Riege SP, J. Appl. Phys., 91, 2014, 2002
  16. Lee KD, Ogawa ET, Matsuhashi H, Justison PR, Ko KS, Ho PS, Appl. Phys. Lett., 79, 3236, 2001
  17. Loke A, Wetzel J, Townsend P, Tanabe T, Vrtis R, Zussmann M, Kumar D, Ryu C, Wong S, IEEE Trans. On Elect. Dev., 46, 2178, 1999
  18. Hau-Riege CP, Thompson CV, Appl. Phys. Lett., 77, 352, 2000
  19. Mallikarjunan A, Murarka SP, Lu TM, Appl. Phys. Lett., 79, 1855, 2001
  20. Mallikarjunan A, Murarka SP, Lu TM, J. Electrochem. Soc., 149(10), f155, 2002
  21. Reif R, Fan A, Chen KN, Das S, Proc. ISQED, 33, 2002
  22. Wu X, Chan PCH, Zhang S, Feng C, Chan M, IEEE Trans. On Electron. Device, 52, 1998, 2005
  23. Nowak EJ, Rainey BA, Fried DM, Kedzierski J, Ieong M, Leipold W, Wright J, Breitwisch M, IEEE Int’l Electron Device Meeting Tech. Digest, 411, 1990
  24. Guarini KW, Topol AW, Ieong M, Yu R, Shi L, Newport MR, Frank DJ, Singh DV, Cohen GM, Nitta SV, Boyd DC, O’Neil PA., Tempest SL, Pogge HB, Purushothaman S, Haensch WE, Dig. Int’l Elect. Dev. Meeting, 943, 2002
  25. Rahman A, Fan A, Chung J, Reif R, 2000 IEEE Int’l Interconnect Technol. Conf., 18, 2000
  26. Souri SJ, Saraswat KC, 1999 IEEE Int’l Interconnect Technol. Conf., 24, 1999
  27. Lee KW, Nakamura T, Ono T, Yamada Y, Mizukusa T, Park KT, Kurino H, Koyanagi M, Dig. Int’l Elect. Dev. Meeting, 165, 2000
  28. Kwon Y, “Wafer Bonding for 3D Integration,” Ph.D. Thesis, Rensselaer Polytechnic Institute, Troy, NY(2003)
  29. Kwon Y, Jindal A, McMahon JJ, Lu JQ, Gutmann RJ, Cale TS, Mater. Res. Soc. Symp. Proc., 766, 27, 2003
  30. Lu JQ, Kwon Y, Kraft RP, Gutmann RJ, McDonald JF, Cale TS, 2001 IEEE Int’l Interconnect Technol. Conf., 219, 2001
  31. Burns JA, Aull BF, Chen CK, Keast CL, Knecht JM, Suntharalingam V, Warner K, Wyatt PW, Yost DRW, IEEE Trans. On Electron. Device, 53, 2507, 2006
  32. Akasaka Y, Proc. IEEE, 74, 1703, 1986
  33. Garrou P, Bower CA, Ramm P, Handbook of 3D Integration, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2008)
  34. Laermer F, Schilp A, “Method for Anisotropic Plasma Etching of Substrates,” US Patent 5,498,312(1996)
  35. Laermer F, Schilp A, “Method for Anisotropically Etching Silicon,” US Patent 5,501,893(1996)
  36. Luft A, Franz U, Emsermann A, Kaspar J, Appl. Phys. A, 63, 93, 1996
  37. Gan EKW, Zheng HY, Lim GC, “Laser Drilling of Micro-Vias in PCB Substrates,” Electronics Packaging Technology Conference(ECTC), 321-326(2000)
  38. Tezcan DS, De Munck K, Pham N, Luhn O, Aarts A, De Moor P, Baert K, Van Hoof C, Electronics Packaging Technology Conference(ECTC), 22, 2006
  39. Worwag W, Dory T, Electronics Packaging Technology Conference(ECTC), 842, 2007
  40. Kondo K, Yonezawa T, Mikami D, Okubo T, Taguchi Y, Takahashi K, Barkey DP, J. Electrochem. Soc., 152(11), h173, 2005
  41. Takahashi KM, Gross ME, J. Electrochem. Soc., 146(12), 4499, 1999
  42. Ramm P, Klumpp A, 2008 IEEE Int’l Interconnect Technol. Conf., 7, 2008
  43. Lee KW, Nakamura T, Sakuma K, Park KT, Shimazutsu N, Miyakawa N, Kim KY, Kurino H, Koyanagi M, Jpn. J. Appl. Phys., 39, 2473, 2000
  44. Bonitz J, Schulz SE, Gessner T, Microelectronic Engineering, 76, 82, 2004
  45. Voss S, Gandikota S, Chen LY, Tao L, Cong D, Duboust A, Yoshida N, Ramaswami S, Microelectronic Engineering, 50, 501, 2000
  46. Ko YK, Seo BS, Park DS, Yang WH, Lee WH, Reucroft PJ, Lee JG, Semi. Sci. Tech., 17, 978, 2002
  47. Wimplinger M, Lu JQ, Yu J, Kwon Y, Matthias T, Cale TS, Gutmann RJ, Mater. Res. Soc. Symp. Proc., 812, 309, 2004
  48. Lindner P, Brubaker C, Glinsner T, Schaefer C, Tischler M, “3D Interconnects Through Wafer Level Bonding,” Semicon Taiwan(2001)
  49. Stengl R, Tan T, Gosele U, Jpn. J. Appl. Phys., 28, 1735, 1989
  50. Tong QY, Gosele U, Semiconductor Wafer Bonding, Wiley, Weinheim (1999)
  51. Turner KT, Spearing SM, J. Appl. Phys., 92, 7568, 2002
  52. Suni T, Henttinen K, Lipsanen A, Dekker J, Luoto H, Kulawski M, J. Electrochem. Soc., 153(1), G78, 2006
  53. Viorel D, Mittendorfer G, Christine T, Lindner P, Microsystem Technologies, 14, 509, 2008
  54. Niklaus F, Stemme G, Lu JQ, Gutmann RJ, “Adhesive Wafer Bonding,” J. Appl. Phys., 99(1), 031101.1-031101.28(2006)
  55. Kwon Y, Seok J, Lu JQ, Cale T, Gutmann R, Korean Chem. Eng. Res., 45(5), 479, 2007
  56. Kwon Y, Seok J, Jpn. J. Appl. Phys., 44, 3893, 2005
  57. Niklaus F, Kumar RJ, McMahon JJ, Yu J, Lu JQ, Cale TS, Gutmann RJ, J. Electrochem. Soc., 153(4), G291, 2006
  58. Minotani T, Royter Y, Ishii H, Hirata A, Michida K, Sasaki A, Nagatsuma T, Microwave Symposium Digest, 1, 57, 2001
  59. Maik W, Chenping J, Toepper M, Hauck K, Electronics Systemintegration Technology Conference, 1401, 2006
  60. Chen KN, Fan A, Tan CS, Reif R, Appl. Phys. Lett., 81, 3774, 2002
  61. Fan A, Rahman A, Reif R, Electrochem. Sol-State Lett., 2, 534, 1999
  62. Tadepalli R, Thompson CV, Appl. Phys. Lett., 90, 151919, 2007
  63. Jindal A, Lu JQ, Kwon Y, Rajagopalan G, McMahon JJ, Zeng AY, Flesher HK, Cale TS, Gutmann RJ, “Wafer Thinning for Monolithic 3D Integration,” Mater. Res. Soc. Symp. Proc., 766, E5.7.1- E5.7.6(2003)
  64. Siniaguine O, Electronics Manufacturing Technology Symposium, 139, 1998
  65. Ramm P, Bonfert D, Gieser H, Haufe J, Iberl F, Klumpp A, Wieland R, Interconnect Technology Conference, 160, 2001
  66. Anthony T, “Forming Electrical Interconnection Through Semiconductor Wafers,” Appl. Phys. Lett., 52(5), 5340- 5343(9817)
  67. Akasaka Y, Nishimura T, Dig. Int’l Elect. Dev. Meeting, 488, 1986
  68. Kunio T, Oyama K, Hayashi Y, Morimoto M, Dig. Int’l Elect. Dev. Meeting, 837, 1989
  69. Gutmann RJ, Lu JQ, Pozder S, Kwon Y, Jindal A, Celik M, McMahon JJ, Yu K, Cale TS, Advanced Metallization Conference; AMC, 2003
  70. Swinnen B, Ruythooren W, De Moor P, Bogaerts L, Carbonell L, De Munck B, Eyckens B, Stoukatch S, Sabuncouglu Teacan D, Tokei Z, Vaes J, Van Aelst J, Beyne E, Dig. Int’l Elect. Dev. Meeting, 2006
  71. Morrow P, Kobrinsky J, Ramanathan S, Park CM, Harmes M, Ramachandrarao V, Park HM, Kloster G, List S, Kim S, Advanced Metallization Conference; AMC, 125, 2004
  72. Takahasi K, Terao H, Tomita Y, Yamaji Y, Hoshino M, Sato T, Morifuji T, Sunohara M, Bonkohara M, Jpn. J. Appl. Phys., 40, 3032, 2001
  73. Lee KW, “Next Generation Package Technology for Higher Performance And Smaller Systems,” 3D Architectures for Semiconductor Integration And Packaging Conference(2006)
  74. Koyanagi M, Nakamura T, Yamada Y, Kikuchi H, Fukushima T, Tanaka T, Kurino H, IEEE Trans. Electron Devices, 53, 2799, 2006
  75. http://www.tezzaron.com.
  76. Enquist P, “Room Temerature Direct Wafer Bonding for Three Dimensional Integrated Sensors,” Sensors and Materials, 17(6), 307-316.